Электротехника и электроника

         

Разряд конденсатора на катушку индуктивности


Цель экспериментов 1. Исследование процесса разряда конденсатора на катушку индуктивности при отсутствии потерь в контуре. 2. Исследование процесса разряда конденсатора на катушку индуктивности при высокой добротности контура (колебательный разряд). 3. Исследование процесса разряда конденсатора на катушку индуктивности при низкой добротности контура (апериодический разряд).


Краткие сведения из теории 1. Разряд конденсатора с начальным напряжением Uco на идеальную катушку индуктивности (R = О). Уравнение для расчета переходного процесса - зависимости напряжения на конденсаторе uc от времени - в этом случае имеет вид:

(8.1)

Корни его характеристического уравнения мнимые сопряженные

где
- угловая резонансная частота,
- период собственных колебаний.

Решение уравнения (8.1):

(8.2)

Ток в контуре определяется из выражения:

(8.3)

где

- волновое сопротивление контура,

Uco - начальное напряжение на конденсаторе.

Порядок проведения экспериментов

Эксперимент 1. Разряд конденсатора с начальным напряжением на идеальную катушку индуктивности. Откройте файл с8_01 (рис. 8.1). Рассчитайте временные зависимости напряжения на конденсаторе Uc(t) и тока ic(t) через него при переключении реле времени. Получите осциллограммы Uc(t) и ic(t) и зарисуйте их на экране осциллографа в разделе "Результаты экспериментов". По осциллограммам определите величины То и р. Сравните их с расчетными значениями.


Эксперимент 2. Энергетические соотношения при разряде конденсатора с начальным напряжением на идеальную катушку индуктивности. Откройте файл с8_02 (рис. 8.2). Рассчитайте энергию в конденсаторе Wc и энергию в катушке индуктивности WL для моментов времени t= О, То/8, То/4, ЗТо/8, То/2, 5Т„/8, ЗТо/4, 7То/8, То. Время отсчитывается от момента переключения реле. Результаты расчета занесите в соответствующую таблицу в разделе "Результаты экспериментов". Получите осциллограммы Wc(t) и WL(I), зарисуйте их на экране осциллографа в разделе "Результаты экспериментов". По осциллограммам Wc(t) и WL(t) определите экспериментальные значения энергий в указанные моменты времени. Результат также занесите в таблицу.



Эксперимент 3. Разряд конденсатора с начальным напряжением на катушку индуктивности при высокой добротности контура. Откройте файл с8_03 (рис. 8.3). Рассчитайте временные зависимости напряжения на конденсаторе Uc(t) и тока ic(t) через него при срабатывании реле времени, а также рассчитайте величины wсв и б. Получите осциллограммы Uc(t) и ic(t), зарисуйте их на экране осциллографа в разделе "Результаты экспериментов". По осциллограммам определите величины Тсв и 5, сравните их с расчетными значениями.


Эксперимент 4. Энергетические соотношения при колебательном разряде конденсатора с начальным напряжением на катушку индуктивности. Откройте файл с8_04 (рис. 8.4). Рассчитайте энергию в конденсаторе We и катушке индуктивности WL для моментов времени t= 0, Тсв/2, Tсв, 3Tcв/2, 2Тсв, 5Тсв/2, ЗТсв, 7Tсв/2, 4Tсв. Время отсчитывается от момента срабатывания реле времени. Результаты расчета занесите в соответствующую таблицу в разделе "Результаты экспериментов". Получите осциллограммы Wc(t) и WL(t), зарисуйте их на экране осциллографа в разделе "Результаты экспериментов". По осциллограммам Wc(t) и WL(t) определите экспериментальные значения энергий в указанные моменты времени и результаты также занесите в таблицу.


Эксперимент 5. Разряд конденсатора с начальным напряжением на катушку индуктивности при низкой добротности контура. Откройте файл с8_05 (рис. 8.5). Рассчитайте временные зависимости напряжения на конденсаторе Uc(t) и тока ic(t) через него, а также величины p1 и р2 при переключении реле времени. Получите осциллограммы тока ic(t) конденсатора при его разряде на RL-цепь и тока через катушку индуктивности L при подсоединении ее через резистор R к источнику с ЭДС, равной начальному напряжению на конденсаторе (нижняя схема). Зарисуйте полученные осциллограммы на экране осциллографа в разделе "Результаты экспериментов". Сравните осциллограммы тока для обоих случаев. Вычислите постоянную времени 1/p1 и сравните ее с постоянной времени L/R для нижней схемы, отметьте положение соответствующего корня характеристического уравнения на комплексной плоскости. Получите осциллограммы тока ic(t) конденсатора при его разряде на RL-цепь и на резистор с сопротивлением R (правая схема). Зарисуйте их на том же экране осциллографа в разделе "Результаты экспериментов". Сравните осциллограммы тока для всех трех схем. Вычислите постоянную времени 1/р2 и сравните ее с постоянной времени RC правой схемы, отметьте положение соответствующего корня характеристического уравнения на комплексной плоскости.



Результаты экспериментов Эксперимент 1. Разряд конденсатора с начальным напряжением на идеальную катушку индуктивности.




Осциллограммы uc(t) и ic(t)


Положение корней характеристического уравнения на комплексной плоскости


Эксперимент 2. Энергетические соотношения при разряде конденсатора с начальным напряжением на идеальную катушку индуктивности.


Осциллограммы Wc(t) и WL(t)


Энер
гия,
Время, с 'Дж
о
То/8


То/4
ЗТо/8
То/2
5То/8
ЗТо/4
7 То/8
То
We.
Дж
расчет
We.
Дж
измерение
WL,
Дж
расчет
WL,
Дж
измерение
Эксперимент 3. Разряд конденсатора с начальным напряжением на катушку индуктивности при высокой добротности контура.


Осциллограммы Uc(t) и ic(t)


Положение корней характеристического уравнения на комплексной плоскости


Эксперимент 4. Энергетические соотношения при колебательном разряде конденсатора с начальным напряжением на катушку индуктивности.


Осциллограммы Wc(t) и W^(t)


Энер
Время, с гия, Дж
о
Тсв/2
ТСБ
ЗТсв/2
2Тсв
5Тсв/2
ЗТсв
7Тсв/2
4Тсв
We,
Дж расчет
We,
Дж измерение
WL,
Дж расчет
WL,
Дж измерение
Эксперимент 5. Разряд конденсатора с начальным напряжением на катушку индуктивности при низкой добротности контура.


Осциллограммы. uc(t) и ic(t)


Положение корней характеристического уравнения на комплексной плоскости


Вопросы 1. Какие характерные точки можно выделить на осциллограммах мгновенных значений энергии в катушке и конденсаторе при разряде конденсатора на идеальную катушку индуктивности?
2. Какое положение на комплексной плоскости занимают корни характеристического уравнения при отсутствии потерь в контуре?
3. Как происходит обмен энергией между компонентами схемы при переходном процессе в отсутствие потерь?
4. Как изменяется форма осциллограмм тока в контуре и напряжений на компонентах при введении в контур небольшого сопротивления (колебательный процесс)?
5. Какими величинами характеризуется затухание тока при колебательном переходном процессе?
6. Какое положение на комплексной плоскости занимают корни характеристического уравнения при колебательном переходном процессе?
7. Сравните форму кривых тока и напряжений при апериодическом переходном процессе с соответствующими кривыми для RL- и RC-цепей.
8. Какое положение на комплексной плоскости занимают корни характеристического уравнения при апериодическом переходном процессе?

с двумя реактивными элементами рассмотрим


Упражнения
8.2. Анализ процессов в сложных схемах
Методические указания Методику расчета и экспериментального исследования процессов в сложных цепях с двумя реактивными элементами рассмотрим на конкретном примере, проведя расчет классическим и операторным методами и сравнив результаты расчета и эксперимента. Задача 1. Переходный процесс при мгновенном изменении параметров цепи.
Рассчитать напряжение на конденсаторе Uc(t) и ток ic(t) в катушке в схеме, приведенной на рис. 8.6 (файл с8_06) при закорачивании ключом [Space] сопротивления R2. При расчете принять, что переключение происходит из установившегося режима.


Расчет классическим методом Шаг 1. Нахождение корней характеристического уравнения. Характеристическое уравнение имеет вид:


Шаг 2. Определение констант в уравнении для тока через катушку. Поскольку корни характеристического уравнения комплексно-сопряженные, переходной процесс носит колебательный характер и, следовательно, ток через индуктивность iL(t) выражается следующей зависимостью:
(8.10)
Уравнение (8.10) содержит две константы, для определения которых необходимо решить систему двух уравнений, одним из которых является само уравнение (8.10). Вторым уравнением, содержащим те же константы, является уравнение для производной тока через индуктивность:
(8.11)
Для определения указанных констант при классическом методе расчета используются уравнения (8.10) и (8.11). Рассмотрим порядок вычисления значений этих выражений в момент t = 0+. Закон коммутации для катушки индуктивности формулируется в следующем виде: iL(0+)=iL(0-). (8.12) Подставляя t=0 в уравнение (8.10), получим уравнение, описывающее состояние схемы до коммутации:
(8.13)
Значение iL(0-) является установившимся значением тока при разомкнутом ключе. Схему замещения для определения этого тока получим, заменив катушку индуктивности в исходной схеме проводником, а конденсатор - разрывом (рис. 8.7). Из этой схемы находим ток до момента коммутации: iL(0-)= 125 В/500 Ом = 0.25 А. Ток Iуст является установившимся значением тока при замкнутом ключе. Схему замещения для определения этого тока получим, исключив из схемы рис. 8.7 сопротивление R2, закороченное ключом (рис. 8.8). Из схемы находим ток в установившемся режиме после коммутации: Iуст= 125 В / 300 Ом = 0.417 А. Подставляя вычисленные значения iL(0-) и Iуст в (8.13), получим первое уравнение для вычисления констант: IcвSinфi =-0.167. (8.14) Рассмотрим теперь уравнение для производной тока в момент времени t(0+). Подставив t= 0 в уравнение (8.11), получим следующее выражение:
(8.15)
где правая часть получена из компонентного уравнения:



Значение UL(0+) не регламентируется непосредственно законами коммутации и для его вычисления нужно использовать оба закона коммутации наряду со вторым законом Кирхгофа. Рассмотрим, как изменяются напряжения на отдельных компонентах




схемы при коммутации. Напряжение на идеальном источнике питания не зависит от состояния схемы; напряжение на сопротивлении R1 измениться не может, поскольку не изменяется ток через индуктивность; напряжение на конденсаторе С также не может измениться по закону коммутации. В то же время напряжение на ключе, равное в момент времени t(0—) напряжению на сопротивлении R2, падает после коммутации до 0. Чтобы второй закон Кирхгофа выполнялся для момента t=(0+), это напряжение должно появиться на катушке индуктивности. Подставляя значение этого напряжения в (8.15), получим второе уравнение для вычисления констант:
(8.16)
Далее решаем систему из двух уравнений (8.14) и (8.16). Из уравнения (8.14) получим:


Подставив это выражение в (8.16), определим:


Ток через катушку индуктивности после подстановки констант в (8.10) вычисляется из выражения:
(8.17)
Шаг 3. Определение констант в уравнении для напряжения на конденсаторе. Результат получим, действуя аналогично изложенному в шаге 2: Напряжение на конденсаторе при колебательном переходном процессе выражается зави симостью:
(8.18)
Уравнение для производной напряжения на конденсаторе:
(8.19)
Согласно закону коммутации:
(8.20)
Величина Uc(0+) является установившимся значением напряжения на конденсаторе при разомкнутом ключе. Его можно рассчитать из схемы замещения, представленной на рис. 8.7. Uc(0-)= 125-250/500 = 62.5 В.
Напряжение UycT является установившимся значением напряжения на конденсаторе при замкнутом ключе. Его также можно получить из схемы замещения, представленной на рис. 8.8. Из схемы получим:


Подставляя вычисленные значения в (8.18), получим для момента t = 0:
(8.21)
Производную напряжения для момента t(0+) можно вычислить подставив в (8.19) значение t = 0:
(8.22)
где правая часть получена из компонентного уравнения:
s


Значение ic(0+) не регламентируется непосредственно законами коммутации и для его вычисления нужно использовать оба закона коммутации наряду с первым законом Кирхгофа. Рассмотрим, как изменяются токи в ветвях, подходящих к узлу 1 на рис. 8.6 при коммутации. По закону коммутации ток через катушку не может измениться; по другому закону коммутации не может измениться и напряжение на конденсаторе (равное напряжению на резисторе Rз), и, соответственно, ток через Rз. Поэтому неизменным остается и ток через конденсатор, который до переключения ключа в установившемся режиме был равен нулю. Подставляя значение этого тока в уравнение (8.22) получаем:
(8.23)
Из уравнения (8.21) получим:


Теперь из уравнения (8.23) можно непосредственно вычислить угол, а затем и Ucв-


Напряжение на конденсаторе после подстановки констант вычисляется из выражения:
(8.24)
Расчет операторным методом Шаг 1. Составление операторной схемы замещения. При составлении операторной схемы замещения (рис. 8.9) элементы замещаются их операторными изображениями: индуктивность заменяется сопротивлением pL и источником ЭДС с напряжением L-iL/O-), отображающим наличие начального тока в катушке, емкость - сопротивлением 1/рс и источником ЭДС с напряжением Uc(0-)/p, отображающим начальное напряжение на конденсаторе, источник постоянной ЭДС - изображением Е/р, изображение резистора при переходе к операторной схеме совпадает с оригиналом. Начальные условия определяются так же, как и при расчете классическим методом, начальные значения тока через индуктивность и напряжения на емкости равны соответственно:


Шаг 2. Определение изображения тока в индуктивности. Найдем изображение тока методом эквивалентного генератора. Замещая эквивалентным генератором схему без левой ветви, найдем:


С учетом параметров эквивалентного генератора изображение тока в левой ветви:


Подставляя значения Uэк(p) и Zэк(p). получим:




Подставляя значения параметров в Fl(p) и F2(p), получим:


Шаг 3. Определение оригинала iL(t) по теореме разложения. В соответствии с теоремой разложения при колебательном характере процесса
(8.25)
Подставляя в формулу (8.25) вычисленные выше значения F1(p) и F3(p) и производя преобразования, получим:
(8.25)
Корни характеристического уравнения F3(p)=0:



Вычисляем производную Fз'(p):


Определим F1(p1):


и, подставив полученное значение в (8.25), определим iL(t):


Аналогично можно определить и величину Uc(t). Экспериментальная проверка Для экспериментального определения величин Uc(t) и iL(t) можно воспользоваться увеличенной моделью осциллографа (рис. 8.10). Установив первый курсор в начале переходного процесса, а второй курсор на отметке текущего времени (800 мкс на рис. 8.10). С табло при этом считываем значения, соответствующие этому моменту времени (см. табл. 8.1). Таблица 8.1. Сравнение результатов расчета и эксперимента


t, мксек
0
200
400
600
800
1000
1200
1400
1600
1800
iL(t),расчет
0.25
0.806
0.776
0.578
0.431
0.378
0.382
0.401
0.416
0421
iL(t),экcnep.
0.25
0.803
0.778
0.580
0.432
0.378
0.381
0.401
0.415
0.421
Uc(t),расчет
62.5
75.525
94.56
105.5
108.13
106.8
104.9
103.8
103.6
103.7
Uc(t),экcnep.
62.5
75.27
94.61
105.5
108.3
107.0
105.1
104.0
103.7
103.9


Задачи для самостоятельного решения Задачи с 1 по 6 и с 24 по 26 приведены в книге, остальные задачи (с 7 по 23) вы сможете найти на прилагающихся к книге дискетах. 1. Схемы с конденсатором и катушкой индуктивности
Задача 1 (с8_11) Рассчитайте временные зависимости напряжения на конденсаторе С и тока через катушку индуктивности L при замыкании ключа [Space] и нулевых начальных условиях. Постройте графики соответствующих временных зависимостей. Результаты расчета проверьте с помощью Electronics Workbench.


Задача 2 (с8_12) Рассчитайте временные зависимости напряжения на сопротивлении R и тока через катушку индуктивности L при замыкании ключа [Space] и нулевых начальных условиях. Постройте графики соответствующих временных зависимостей. Результаты расчета проверьте с помощью Electronics Workbench.


Задача 3 (с8_13) Рассчитайте временные зависимости напряжения на конденсаторе С и тока через катушку индуктивности L при размыкании ключа [Space] и постройте графики соответствующих временных зависимостей. Результаты расчета проверьте с помощью Electronics Workbench.



Задача 4 (с8_14) Рассчитайте временные зависимости напряжения на конденсаторе С и тока через катушку индуктивности L при замыкании ключа [Space] и нулевых начальных условиях. Постройте графики соответствующих временных зависимостей. Результаты расчета проверьте с помощью Electronics Workbench.


Задача 5 (с8_15) Рассчитайте временные зависимости напряжения на конденсаторе С и тока через катушку индуктивности L при замыкании ключа [Space] и нулевых начальных условиях. Постройте графики соответствующих временных зависимостей. Результаты расчета проверьте с помощью Electronics Workbench.


Задача 6 (с8_16) Рассчитайте временные зависимости напряжения на конденсаторе С и тока через катушку индуктивности L при замыкании ключа [Space] и нулевых начальных условиях. Постройте графики соответствующих временных зависимостей. Результаты расчета проверьте с помощью Electronics Workbench.


2. Переходные процессы при некорректных включениях
Задача 24 (с8_34) Рассчитайте временные зависимости напряжения на обоих конденсаторах и тока через резистор R при замыкании ключа [Space]. Постройте графики соответствующих временных зависимостей. Результаты расчета проверьте с помощью Electronics Workbench.


Задача 25 (с8_35) Рассчитайте временные зависимости токов через катушки индуктивности L1 и L2 при размыкании ключа [Space]. Постройте графики соответствующих временных зависимостей. Результаты расчета проверьте с помощью Electronics Workbench.


Задача 26 (с8_36) Рассчитайте временные зависимости токов через катушки индуктивности L1 и L2 при размыкании ключа [Space]. Постройте графики соответствующих временных зависимостей. Результаты расчета проверьте с помощью Electronics Workbench.