Исследование дешифраторов
Цель работы
1. Ознакомление с принципом работы дешифраторов.
2. Исследование влияния управляющих сигналов на работу дешифраторов.
3. Реализация и исследование функциональных модулей на основе дешифраторов.
Краткие сведения из теории
1. Комбинационные схемы. Комбинационной схемой называется логическая схема, реализующая однозначное соответствие между значениями входных и выходных сигналов. Для реализации комбинационных схем используются логические элементы, выпускаемые в виде интегральных схем. В этот класс входят интегральные схемы дешифраторов, шифраторов, мультиплексоров, демультиплексоров, сумматоров.
В этой главе для удобства вместо схемы дешифратора используется схема демультиплексора, это возможно благодаря сходству алгоритмов работы.
2. Дешифраторы. Дешифратор - логическая комбинационная схема, которая имеет п информационных входов и 2n выходов. Каждой комбинации логических уровней на входах будет соответствовать активный уровень на одном из 2n выходов. Обычно п равно 2,3 или 4. На рис. 13.1 изображен дешифратор' с п = 3, активным уровнем является уровень логического нуля. На входы С, В, А можно подать следующие комбинации логических уровней: 000, 001, 010...Ill, всего 8 комбинаций. Схема имеет 8 выходов, на одном из которых формируется низкий потенциал, на остальных - высокий. Номер этого единственного выхода, на котором формируется активный (нулевой) уровень, соответствует числу N, определяемому состоянием входов С, В, А следующим образом: N = С22 + В2' + А'2°. Например, если на входы подана комбинация логических уровней 011, то из восьми выходов микросхемы (YO, Y1...Y7) на выходе с номером N=3 установится нулевой уровень сигнала (Y3=0), a все остальные выходы будут иметь уровень логической единицы. Этот принцип формирования выходного сигнала можно описать следующим образом:
Видно, что уровень сигнала на выходе Y3 описывается выражением:
В таком же виде можно записать выражения для каждого выхода дешифратора:
Помимо информационных входов А,В,С дешифраторы обычно имеют дополнительные входы управления G. Сигналы на этих входах, например, разрешают функционирование дешифратора или переводят его в пассивное состояние, при котором, независимо от сигналов на информационных входах, на всех выходах установится уровень логической единицы. Можно сказать, что существует некоторая функция разрешения, значение которой определяется состояниями управляющих входов. Разрешающий вход дешифратора может быть прямым или инверсным. У дешифраторов с прямым разрешающим входом активным уровнем является уровень логической единицы, у дешифраторов с инверсным входом — уровень логического нуля. На рис. 13.1 представлен дешифратор с одним инверсным входом управления. Принцип формирования выходного сигнала в этом дешифраторе с учетом сигнала управления описывается следующим образом:
У дешифратора с несколькими входами управления функция разрешения, как правило, представляет собой логическое произведение всех разрешающих сигналов управления. Например, для дешифратора 74138 с одним прямым входом управления G1 и двумя инверсными G2A и G2B (рис. 13.2) функции выхода Yi и разрешения G имеют вид:
Обычно входы управления используются для каскадирования (увеличения разрядности) дешифраторов или при параллельной работе нескольких схем на общие выходные линии.
3. Использование дешифратора в качестве демультиплексора. Дешифратор может быть использован и как демультиплексор - логический коммутатор, подключающий входной сигнал к одному из выходов. В этом случае функцию информационного входа выполняет один из входов разрешения, а состояние входов С, В и А задает номер выхода, на который передается сигнал со входа разрешения. Порядок проведения экспериментов
Эксперимент 1. Исследование принципа работы дешифратора 3х8 в основном режиме. Откройте файл с13_01 со схемой, изображенной на рис. 13.3. Включите схему. Подайте на вход G уровень логической единицы. Для этого клавишей G ключ G установить в верхнее положение. Определите и запишите уровни сигналов на выходах YO...Y7 в таблицу истинности при G = 1 (табл. 13.1 в разделе "Результаты экспериментов"). Подайте на вход G уровень логического нуля (ключ G установите в нижнее положение). Убедитесь, что дешифратор перешел в рабочий режим и на одном из выходов установился уровень логического нуля. Подавая все возможные комбинации уровней логических сигналов на входы А, В, С с помощью одноименных ключей и определяя с помощью логических пробников уровни логических сигналов на выходе схемы, заполните таблицу истинности дешифратора при G=0 (табл. 13.1. в разделе "Результаты экспериментов").
Эксперимент 2. Исследование принципа работы дешифратора 3х8 в режиме 2х4. а). В схеме рис. 13.3 подключите вход С к общему проводу (земле), задав С=0 (рис. 13.4). Изменяя уровни сигналов на входах В и А и наблюдая уровни сигналов на выходах схемы, с помощью пробников заполните таблицу истинности дешифратора (табл. 13.2 в разделе "Результаты экспериментов"). Укажите выходы, на которых уровень сигнала не меняется. б). Проделайте пункт а) при С=1, для чего вход С подключите к источнику логической единицы. Заполните таблицу истинности дешифратора (табл. 13.3 в разделе "Результаты экспериментов"). в). Проделайте пункт а), заземлив вход В (В=0), а на входы А и С подавая все возможные комбинации логических уровней. Заполните таблицу истинности (табл. 13.4 в разделе "Результаты экспериментов"), там же укажите номера выходов, на которых уровень логического сигнала не изменяется.
Эксперимент 3. Исследование работы дешифратора в качестве демультиплексора. Откройте файл с13_02 со схемой, изображенной на рис. 13.5. Включите схему. В пошаговом режиме работы генератора слов подайте на входы С, В, А демультиплексора слова, эквивалентные числам от 0 до 7. Наблюдая при помощи логических пробников уровни сигналов на выходах, заполните таблицу функционирования (табл. 13.5 в разделе "Результаты экспериментов"). Убедитесь, что изменяющийся сигнал на входе G поочередно появляется на выходах дешифратора.
Эксперимент 4. Исследование дешифратора 3х8 с логической схемой на выходе. Откройте файл с13_03 со схемой, изображенной на рис. 13.6. Включите схему. Установите генератор слов в пошаговый режим. Последовательно подавая слова от генератора на вход схемы и наблюдая уровень логического сигнала на выходе схемы с помощью логического пробника, составьте таблицу истинности функции F, реализуемой схемой на выходе (табл. 13.6 в разделе "Результаты экспериментов"). По таблице запишите аналитическое выражение функции и занесите полученное выражение в раздел "Результаты экспериментов".
Эксперимент 5. Исследование микросхемы 74138. а). Откройте файл с13_04 (рис. 13.7). Установите генератор слов в пошаговый режим. Включите схему. С помощью соответствующих ключей установите состояние управляющих входов G1=0, G2A=G2B=1. Подавая на входы А, В, С слова от генератора слов и наблюдая состояние выходов с помощью логических пробников, заполните таблицу функционирования дешифратора 74138 (табл. 13.7 в разделе "Результаты экспериментов"). б). Повторите операции пункта а) при G1=G2A=1, G2B=0. Заполните таблицу функционирования дешифратора 74138 (табл. 13.8 в разделе "Результаты экспериментов").
в). Повторите операции пункта а) при G1=1, G2A=G2B=0. Заполните таблицу функционирования дешифратора 74138 (табл. 13.9 в разделе "Результаты экспериментов").
Эксперимент 6. Исследование микросхемы 74138 с помощью логического анализатора. Откроите файл с13_05 (рис. 13.8). Установите генератор слов в пошаговый режим. Включите схему. С помощью соответствующих ключей установите состояние управляющих входов G1=1, G2A=G2B=0. Подавая слова от генератора слов, получите временные диаграммы работы дешифратора на экране логического анализатора и зарисуйте их в разделе "Результаты экспериментов". Сопоставьте временные диаграммы с таблицей 13.9.
Результаты экспериментов Эксперимент 1. Исследование работы дешифратора 3х8 в основном режиме. Таблица 13.1
С
Эксперимент 2. Исследование дешифратора 3х8 в режиме 2х4. a) Таблица 13.2
С
б)- Таблица 13.3
С
в) . Таблица 13.4
С
Эксперимент 3. Исследование работы дешифратора в качестве демультиплексора. Таблица 13.5
С
Эксперимент 4. Исследование дешифратора 3х8 с логической схемой на выходе. Таблица 13.6
G
1
Эксперимент 5. Исследование микросхемы 74138. а). Таблица 13.7
С
С
С
Вопросы
1. Какие логические функции выполняет дешифратор?
2. Каково назначение входов управления в дешифраторе, как влияет сигнал управления на выходные функции дешифратора?
3. Какие дополнительные логические элементы необходимы для реализации логических функции п аргументов на основе дешифратора с прямыми выходами? А с инверсными?
4. Как выглядит схема дешифратора 2х4, выполненная в базисе И, ИЛИ, НЕ? Входы дешифратора А, В, выходы YO, Yl, Y2, Y3. Сколько элементов каждого типа для этого требуется?
5. Как надо видоизменить схему дешифратора 2х4 в предыдущем случае, чтобы оснастить её прямым управляющим входом? Инверсным? Обозначьте входы дешифратора А, В, управляющий вход G или , выходы YO, Yl, Y2, Y3. 6. Как из двух дешифраторов 2х4 сделать один дешифратор 3х8?
7. Как на основе нескольких дешифраторов 2х4 с управляющим входом сделать дешифратор 4х16? Сколько дешифраторов 2х4 потребуется для решения этой задачи, если не использовать другие элементы?
8. Как на основе дешифратора 2х4 сделать схему, фиксирующую совпадение двух бит (А=В=1, А=В=0) и реализующую функцию
9. Как на основе дешифратора сделать логическую схему, реализующую функцию
Исследование мультиплексоров
Цель работы
1. Ознакомление с принципом работы мультиплексора.
2. Реализация и исследование функциональных модулей на основе мультиплексоров.
Краткие сведения из теории
1. Мультиплексоры. Мультиплексор - комбинационная логическая схема, представляющая собой управляемый переключатель, который подключает к выходу один из информационных входов данных. Номер подключаемого входа равен числу (адресу), определяемому комбинацией логических уровней на входах управления. Кроме информационных и управляющих входов, схемы мультиплексоров содержат вход разрешения, при подаче на который активного уровня мультиплексор переходит в активное состояние. При подаче на вход разрешения пассивного уровня мультиплексор перейдет в пассивное состояние, для которого сигнал на выходе сохраняет постоянное значение независимо от значений информационных и управляющих сигналов. Число информационных входов у мультиплексоров обычно 2, 4, 8 или 16. На рис. 13.9 представлен мультиплексор 8х1 с инверсным входом разрешения G, прямым Y и инверсным W-выходами
2. Уравнение мультиплексора. Функционирование мультиплексора, представленного нарис. 13.9, описывается характеристическим уравнением, связывающим сигнал на выходе (Y) с разрешающим (G), входными информационными (DO...D7) и управляющими (А, В, С) сигналами:
Как видно из уравнения, на мультиплексоре можно реализовать логические функции, для чего нужно определить, какие сигналы и логические константы следует подавать на входы мультиплексора.
3. Реализация заданной функции с помощью мультиплексора. Логическая функция п переменных определена для 2" комбинация значений переменных. Это позволяет реализовать функцию п-переменных на мультиплексоре, имеющем п-управляющих и 2n информационных входов. В этом случае каждой комбинации значений аргументов соответствует единственный информационный вход мультиплексора, на который подается значение функции. Например, требуется реализовать функцию
Эта функция определена только для 8 комбинаций значений переменных, поэтому для её реализации молено использовать мультиплексор 8х1 с тремя управляющими входами. Составим таблицу истинности функции:
N
Из таблицы видно, что для реализации функции на мультиплексоре необходимо подать на информационный вход мультиплексора с номером N сигнал, значение которого равно соответствующему значению функции F1, т. е. на входы с номерами 1, 2, 4, 5 следует подать уровень логического нуля, а на остальные - уровень логической единицы. Таким образом, при подаче комбинации логических уровней на управляющие входы мультиплексора, к его выходу подключится вход, значение сигнала на котором равно соответствующему значению функции. Схемная реализация приведена на рис. 13.10. При реализации логических функций на информационные входы можно подавать не только константы, но и изменяющиеся входные сигналы. Так, например, рассмотрим другой способ реализации функции F1, рассмотренной выше. Для этого минимизируем выражение функции:
Составим таблицу истинности функции в зависимости от значений переменных а и b:
N
Заданную такой таблицей функцию реализуют, как и в предыдущем случае, подав на вход с номером N сигнал, значение которого соответствует значению функции F1. В данном случае сигналы с и с', соответствующие переменной с, подаются на информаци-
онные входы, как указано в таблице истинности. При этом сокращается число управляющих входов. Схемная реализация такого способа задания функции представлена на рис. 13.11. Так как используются только два адресных входа, управляющий вход С можно заземлить. При этом состояние информационных входов D4...D7 безразлично. Уровень сигнала на выходе схемы определяется комбинацией уровней сигналов в точках А, В, С, соответствующих переменным а, Ь, с. Схема рис.13.11. по существу представляет собой мультиплексор 4х1 с двумя управляющими и четырьмя информационными входами. Если функцию можно представить в виде произведения одночлена на многочлен, то её также можно реализовать при помощи мультиплексора. Как следует из уравнения мультиплексора, сигнал, соответствующий одночлену, нужно подать на вход разрешения. Например, требуется реализовать функцию F2, описываемую следующим выражением:
При реализации данной функции на мультиплексоре сигнал, соответствующий переменной х, следует подать на его разрешающий вход. Рассмотрим, какие сигналы необходимо подать на управляющие входы мультиплексора. Выражение в скобках можно рассматривать как некоторую функцию / пяти переменных: а, Ь, с, d, e, из которых наиболее часто используются переменные а, Ь и с. Поэтому сигналы, соответствующие этим переменным, нужно подать на управляющие входы мультиплексора. Определим, какие сигналы следует подать на информационные входы, чтобы реализовать функцию /. Для этого составим таблицу истинности функции в зависимости от значений переменных а, Ь и с: Из таблицы видно, что на информационные входы с номерами N = 0, 2, 4, 6 нужно подать уровень логического нуля. Сигнал, соответствующий переменной d, нужно подать на входы с номерами N = 1, 5, сигнал, соответствующий переменной e, - на вход с номером 3. Соответствующая схемная реализация представлена на рис. 13.12.
N
Порядок проведения экспериментов
Эксперимент 1. Исследование мультиплексора.
а). Откройте файл с13_06 со схемой, изображенной на. рис. 13.13. Включите схему. С помощью ключа G установите на входе G мультиплексора уровень логического нуля. Поочередно подавая все возможные комбинации логических уровней при помощи ключей А, В, С на соответствующие входы мультиплексора, для каждой комбинации с помощью логических пробников определите, переключение какого из ключей в левой части схемы изменяет состояние выходов мультиплексора. Обозначение соответствующего входа мультиплексора запишите в таблицу 13.10 в разделе "Результаты экспериментов", указав при этом, как передается входной сигнал на выходы мультиплексора (напрямую или с инверсией). Например, если переключение ключа 4 изменяет состояние выходов мультиплексора, в таблице в строке с соответствующей комбинацией уровней сигналов на входах А, В, С следует записать для выхода Y - D4, для выхода W - D4. б). Установите при помощи ключа G уровень логической единицы на входе G микросхемы. В раздел "Результаты экспериментов" запишите обозначения выводов, которые при переключении соответствующих ключей в левой части схемы не влияют на состояние выходов микросхемы.
Эксперимент 2. Исследование мультиплексора с помощью генератора слов.
Откройте файл с13_07 со схемой, изображенной на рис. 13.14. Включите схему. Подавая в пошаговом режиме слова от генератора слов на входы мультиплексора и наблюдая уровни сигналов на выходах Y и W при помощи логических пробников, заполните таблицу 13.11 в разделе "Результаты экспериментов".
Эксперимент 3. Реализация заданной функции с помощью мультиплексора. а). Определите значение функции F1 для каждой комбинации значений аргументов и заполните графу F1paсч в разделе "Результаты экспериментов". Откройте файл с13_08 со схемой, изображенной на рис. 13.15. Включите схему. Подайте при помощи ключей А, В, С все возможные комбинации логических сигналов на входы мультиплексора и, определяя уровень сигнала на выходе Y логическим пробником F1, заполните графу F1a) в таблице 13.12 в разделе "Результаты экспериментов". Убедитесь, что функция, реализуемая мультиплексором, описывается выражением:
б). Откройте файл с13_09 со схемой, изображенной на. рис. 13.16. Включите схему. Подавая в пошаговом режиме слова от генератора слов на входы мультиплексора и наблюдая уровень сигнала на выходе Y логическим пробником F1, заполните графу F16) в таблице 13.12 в разделе "Результаты экспериментов". Убедитесь, что сигнал на выходе также определяется функцией F1. в). Откройте файл с13_10 со схемой, изображенной на рис. 13.17. Последовательно подавая на входы схемы все возможные комбинации уровней логических сигналов, убедитесь, что уровень логической единицы на выходе появляется только в случаях, когда на входах схемы действуют комбинации, описываемые шестнад-цатеричными эквивалентами 07Н, 09Н, ОСН, ODH, OFH, 13h, 17H, 19Н, 1ВН, 1СН, 1DH, 1FH, при которых функция F2 принимает значение 1.
Эксперимент 4. Исследование мультиплексора 74153.
а). Откройте файл с13_11 со схемой, изображенной на рис. 13.18. Исследуйте работу сдвоенного четырехканального мультиплексора (микросхема 74153). Составьте таблицу функционирования схемы для выходов Y1 и Y2. Для этого установите ключами 1 и 2 уровень логического нуля на входах G1 и G2. Затем в пошаговом режиме последовательно подайте от генератора все слова последовательности для каждой комбинации логических уровней на входах А и В. Для каждого шага определите входы, сигналы с которых проходят на выходы микросхемы. Обозначения входов занесите в таблицу 13.12 в разделе "Результаты экспериментов".
б). При помощи ключа 1 установите уровень логической единицы на входе 1G микросхемы. Подавая на входы микросхемы слова от генератора, определите, какой из выходов микросхемы перестал реагировать на изменение состояния входов. Запишите обозначение этого вывода в раздел "Результаты экспериментов". в). Повторите действия пункта б), установив на входе 2G уровень логической единицы, а на входе 1G — уровень логического нуля.
Результаты экспериментов
Эксперимент 1. Исследование мультиплексора. а).
Таблица 13.10
А
Эксперимент 2. Исследование мультиплексора с помощью генератора слов.
Таблица 13.11
А
Таблица 13.12
А
А
Вопросы
1. Функцию какого электрического устройства выполняет мультиплексор для логических сигналов?
2. Каким аналитическим уравнением описывается работа мультиплексора 2х1 с управляющим входом? В уравнении используйте следующие обозначения: входы - А, В, выход - Y, разрешающий вход G. Какие и в каком количестве логические элементы требуются для реализации этого уравнения?
3. Как реализовать схему мультиплексора 2х1 с управляющим входом на элементах И-НЕ?
4. Как можно на основе двух мультиплексоров 2х1 сделать один мультиплексор 4х1? Какие дополнительные элементы понадобятся для этого?
5. Функции скольких переменных можно реализовать без дополнительных элементов (за исключением инверторов) на одном мультиплексоре 4х1? На мультиплексоре 8х1? На мультиплексоре 16х1?
6. При какой форме аналитического представления логической функции, предназначенной для реализации на мультиплексоре, управляющий вход G может быть использован для подачи одного из входных сигналов?
7. Какими логическими уравнениями описывается работа микросхемы сдвоенного мультиплексора 74153?
Применение дешифраторов
Задачи для самостоятельного решения
Задача 1.
Соберите схему, изображенную на рис. 13.19, микросхема 74139 - сдвоенный четырехканальный мультиплексор. Составьте таблицу функционирования схемы. К какому типу относится схема?
Задача 2.
Разработайте и соберите при помощи Electronics Workbench схему дешифратора 4х16 на основе ДВУХ базовых дешифраторов 3х8. Убедитесь в правильности его функционирования. Рассмотрите варианты использования оставшихся входов разрешения для организации режима разрешения.
Задача 3.
Разработайте и соберите по аналогии с предыдущим заданием при помощи Electronics 'Workbench схему дешифратора 5х32 на основе четырех дешифраторов 3х8. Убедитесь в I правильности его функционирования
Указание: старшие разряды входного пятиразрядного кода е и d подключите к входам разрешения так, чтобы функции разрешения для соответствующих входов определялись следующими выражениями:
(для формирования последнего произведения необходим элемент НЕ).
Задача 4.
Разработайте, соберите и испытайте схемы на основе базового дешифратора и элементов 2И-НЕ или 2И, реализующие заданную функцию F. На входе разрешения установить активный уровень. Варианты задач приведены ниже.
Задача 5.
Разработайте, соберите и испытайте схемы на основе дешифратора 3х8 и элемента И-НЕ, реализующие заданную функцию F. Один из входов разрешения использовать для подачи аргумента одного из сигналов. Варианты задач приведены ниже.
Задача 6.
Разработайте, соберите и испытайте схемы на основе дешифратора, формирующие нули на указанных выходах при следующих комбинациях логических уровней на входах, заданных шестнадцатеричными числами:
Выходы
№ вар.
YO
Y1
Y2
Y3
Y4
Y8
Y6
Y7
1
0...7
8...F
10...17
18...IF
20...27
28...2F
30...37
38...3F
2
0,2,4,6
1,3,5,7
8,А,С,Е
9,B,D,F
10,12, 14,16
11,13, 15,17
18,1А, 1С.1Е
19,1В, 1D.1F
3
0,4,8,С
1,5,9,D
2,6,А,Е
3,7,B,F
10,14, 18.1С
11.15, 19.1D
12.16, 1А.1Е
13,17, 1B, IF
4
0,8, 10,18
1,9, 11,19
2.А. 12,1А
3.B, 13,1В
4.С, 14.1С
5.D, 15,ID
6,Е, 16,1Е
7,F, 17,IF
Применение мультиплексоров
Задачи для самостоятельного решения
Задача 1.
Разработать, собрать и проверить работу схемы на основе мультиплексора 8х1, реализующую заданную логическую функцию У. Варианты задач:
Задача 2.
Выполнить задачи 1)...5) предыдущего задания на мультиплексоре 4х1. Выполнить задачи 6)...12) предыдущего задания на мультиплексоре 4х1 и логических элементах 2И-НЕ.