Вы хотите, чтобы подарок постоянно
Нужна реклама, которую прочитает целевая аудитория?
Вам нужен подарок для постоянных и крупных клиентов?
Вы хотите, чтобы подарок постоянно напоминал о Вас?
Подарите ПУЭ в удобном для работы формате справки windows с символикой и рекламой Вашей фирмы. Подарок, который обойдется недорого Вам и будет долго служить и напоминать клиентам о Вашей фирме.
Что?
Рекламные баннеры, символика фирмы, странички с информацией о Вашей фирме, ссылки на Ваш сайт в Интернет, прайс-листы, информация о товарах и услугах. Возможности ограничены только Вашей фантазией. Пример оформления здесь.
Где?
Сделать заказ можно написав письмо по адресу almih99@mail.ru.
Когда?
Срок исполнения заказа зависит от его сложности и может составлять от 2 до 10 дней для ПУЭ и документов, подготовленных к получению файла справки. Для других документов срок изготовления зависит от объема, и может варьироваться в достаточно широких пределах.
Аккумуляторные батареи
1. Измерение сопротивления изоляции. Измерение производится вольтметром (внутреннее сопротивление вольтметра должно быть точно известно, класс не ниже 1). При полностью снятой нагрузке должно быть измерено напряжение батареи на зажимах и между каждым из зажимов и землей. Сопротивление изоляции Rx вычисляется по формуле где Rq - внутреннее сопротивление вольтметра; U - напряжение на зажимах батареи; U1 и U2 - напряжение между положительным зажимом и землей и отрицательным зажимом и землей. Сопротивление изоляции батареи должно быть не менее указанного ниже:
Номинальное напряжение, В | 24 | 48 | 110 | 220 |
Сопротивление, кОм | 60 | 60 | 60 | 150 |
Показатель | Нормы для серной кислоты | Нормы для электролита | |
Высшего сорта | Разведенная свежая кислота для заливки в аккумуляторы | Электролит из работающего аккумулятора | |
1. Внешний вид | Прозрачная | Прозрачная | |
2. Интенсивность окраски (определяется колориметрическим способом), мл | 0,6 | 0,6 | 1 |
3. Плотность при температуре 20 ?С, г/см3 | 1,83 - 1,84 | 1,18±0,005 | 1,2 - 1,21 |
4. Содержание железа, %, не более | 0,005 | 0,006 | 0,008 |
5. Содержание нелетучего остатка после прокаливания, %, не более | 0,02 | 0,03 | - |
6. Содержание окислов азота, %, не более | 0,00003 | 0,00005 | - |
7. Содержание мышьяка, %, не более | 0,00005 | 0,00005 | - |
8. Содержание хлористых соединений, %, не более | 0,0002 | 0,0003 | 0,0005 |
9. Содержание марганца, %, не более | 0,00005 | 0,00005 | - |
10. Содержание меди, %, не более | 0,0005 | 0,0005 | - |
11. Содержание веществ, восстанавливающих маргацевокислый калий, мл 0,01Н раствора КМnО4, не более | 4,5 | - | - |
12. Содержание суммы тяжелых металлов в пересчете на свинец, %, не более | 0,01 | - | - |
Аккумуляторные установки
Область применения Электрическая часть Строительная часть Санитарно-техническая часть
Atlas-ad
Поставка кабельно-проводниковой и электротехнической продукции
Получить подробную информацию по кабельно-проводниковой и электротехнической продукции, Вы можете по нашим телефонам:
(095) 517-15-34,
(095) 485-95-02,
(095) 485-50-90.
На нашем сайте www.atlastpk.ru можно ознакомится с ассортиментом и ценами на предлагаемую продукцию.
Аварийное освещение
6.1.21. Аварийное освещение разделяется на освещение безопасности и эвакуационное. Освещение безопасности предназначено для продолжения работы при аварийном отключении рабочего освещения. Светильники рабочего освещения и светильники освещения безопасности в производственных и общественных зданиях и на открытых пространствах должны питаться от независимых источников. 6.1.22. Светильники и световые указатели эвакуационного освещения в производственных зданиях с естественным освещением и в общественных и жилых зданиях должны быть присоединены к сети, не связанной с сетью рабочего освещения, начиная от щита подстанций (распределительного пункта освещения) или, при наличии только одного ввода, начиная от вводного распределительного устройства. 6.1.23. Питание светильников и световых указателей эвакуационного освещения в производственных зданиях без естественного освещения следует выполнять аналогично питанию светильников освещения безопасности (п. 6.1.21.). В производственных зданиях без естественного света в помещениях, где может одновременно находиться 20 человек и более, независимо от наличия освещения безопасности должно предусматриваться эвакуационное освещение по основным проходам и световые указатели "выход", автоматически переключаемые при прекращении их питания на третий независимый внешний или местный источник (аккумуляторная батарея, дизель-генераторная установка и т.п.), не используемый в нормальном режиме для питания рабочего освещения, освещения безопасности и эвакуационного освещения, или светильники эвакуационного освещения и указатели "выход" должны иметь автономный источник питания. 6.1.24. При отнесении всех или части светильников освещения безопасности и эвакуационного освещения к особой группе первой категории по надежности электроснабжения необходимо предусматривать дополнительное питание этих светильников от третьего независимого источника. 6.1.25. Светильники эвакуационного освещения, световые указатели эвакуационных и (или) запасных выходов в зданиях любого назначения, снабженные автономными источниками питания, в нормальном режиме могут питаться от сетей любого вида освещения, не отключаемых во время функционирования зданий. 6.1.26.
Для помещений, в которых постоянно находятся люди или которые предназначены для постоянного прохода персонала или посторонних лиц и в которых требуется освещение безопасности или эвакуационное освещение, должна быть обеспечена возможность включения указанных видов освещения в течение всего времени, когда включено рабочее освещение, или освещение безопасности и эвакуационное освещение должны включаться автоматически при аварийном погасании рабочего освещения. 6.1.27. Применение для рабочего освещения, освещения безопасности и (или) эвакуационного освещения общих групповых щитков, а также установка аппаратов управления рабочим освещением, освещением безопасности и (или) эвакуационным освещением, за исключением аппаратов вспомогательных цепей (например сигнальных ламп, ключей управления), в общих шкафах не допускается. Разрешается питание освещения безопасности и эвакуационного освещения от общих щитков. 6.1.28. Использование сетей, питающих силовые электроприемники, для питания освещения безопасности и эвакуационного освещения в производственных зданиях без естественного освещения не допускается. 6.1.29. Допускается применение ручных осветительных приборов с аккумуляторами или сухими элементами для освещения безопасности и эвакуационного освещения взамен стационарных светильников (здания и помещения без постоянного пребывания людей, здания площадью застройки не более 250м2).
Автоматическое ограничение повышения напряжения
3.3.86. С целью ограничения длительности воздействия повышенного напряжения на высоковольтное оборудование линий электропередачи, электростанций и подстанций, вызванного односторонним отключением фаз линий, должны применяться устройства автоматики, действующие при повышении напряжения выше 110-130% номинального, при необходимости с контролем значения и направления реактивной мощности по линиям электропередачи. Эти устройства должны действовать с выдержкой времени, учитывающей допустимую длительность перенапряжений и отстроенной от длительности коммутационных и атмосферных перенапряжений и качаний, в первую очередь на включение шунтирующих реакторов (если таковые имеются на электростанции или подстанции, где зафиксировано повышение напряжения). Если на электростанции или подстанции отсутствуют шунтирующие реакторы, имеющие выключатели, или включение реакторов не приводит к требуемому снижению напряжения, устройства должны действовать на отключение линии, вызвавшей повышение напряжения.
Автоматическое ограничение повышения частоты
3.3.84. С целью предотвращения недопустимого повышения частоты на тепловых станциях, которые могут оказаться работающими параллельно с гидроэлектростанциями значительно большей мощности в условиях сброса нагрузки, должны применяться устройства автоматики, действующей при повышении частоты выше 52-53 Гц. Эти устройства должны в первую очередь действовать на отключение части генераторов ГЭС. Возможно применение устройств, действующих на отделение ТЭС с нагрузкой, по возможности соответствующей их мощности, от ГЭС. Кроме того, в узлах энергосистемы, содержащих только ГЭС, должны предусматриваться устройства, ограничивающие аварийное повышение частоты значением 60 Гц за счет отключения части генераторов для обеспечения нормальной работы двигательной нагрузки, а в узлах, содержащих только ТЭС, - устройства, ограничивающие длительное повышение частоты значением, при котором нагрузка энергоблоков не выходит за пределы их регулировочного диапазона.
Автоматическое ограничение снижения напряжения
3.3.85. Устройства автоматического ограничения снижения напряжения должны предусматриваться с целью исключения нарушения устойчивости нагрузки и возникновения лавины напряжения в послеаварийных условиях работы энергосистемы. Указанные устройства могут контролировать кроме значения напряжения другие параметры, включая производную напряжения, и воздействуют на форсировку возбуждения синхронных машин, форсировку устройств компенсации, отключение реакторов и в порядке исключения, при недостаточности сетевых мероприятий и наличии обоснования - на отключение потребителей.
Автоматическое ограничение снижения частоты
3.3.76. Автоматическое ограничение снижения частоты должно выполняться с таким расчетом, чтобы при любом возможном дефиците мощности в энергообъединении, энергосистеме, энергоузле возможность снижения частоты ниже уровня 45 Гц была исключена полностью, время работы с частотой ниже 47 Гц не превышало 20 с, а с частотой ниже 48,5 Гц - 60 с. 3.3.77. Система автоматического ограничения снижения частоты осуществляет: автоматический частотный ввод резерва; автоматическую частотную разгрузку (АЧР); дополнительную разгрузку; включение питания отключенных потребителей при восстановлении частоты (ЧАПВ); выделение электростанций или генераторов со сбалансированной нагрузкой, выделение генераторов на питание собственных нужд электростанций. 3.3.78. Автоматический ввод резерва при снижении частоты должен использоваться в первую очередь, чтобы по возможности уменьшить объем отключения или длительность перерыва питания потребителей, и предусматривает: мобилизацию включенного резерва на тепловых электростанциях; автоматический пуск гидроагрегатов, находящихся в резерве; автоматический переход в активный режим гидрогенераторов, работающих в режиме синхронных компенсаторов; автоматический пуск газотурбинных установок. 3.3.79. Автоматическая частотная разгрузка предусматривает отключение потребителей небольшими долями по мере снижения частоты (АЧРI) или по мере увеличения продолжительности существования пониженной частоты (AЧPII). Устройства АЧР должны устанавливаться, как правило, на подстанциях энергосистемы. Допускается их установка непосредственно у потребителей под контролем энергосистемы. Объемы отключения нагрузки устанавливаются, исходя из обеспечения эффективности при любых возможных дефицитах мощности; очередность отключения выбирается так, чтобы уменьшить ущерб от перерыва электроснабжения, в частности должно применяться большее число устройств и очередей АЧР, более ответственные потребители должны подключаться к более дальним по вероятности срабатывания очередям. Действие АЧР должно быть согласовано с работой устройств АПВ и АВР.
Недопустимо уменьшение объема АЧР за счет действия устройств АВР или персонала. 3.3.80. Устройства дополнительной разгрузки должны применяться в тех энергосистемах или частях энергосистемы, где возможны особенно большие местные дефициты мощности, при которых действие устройств АЧРI оказывается недостаточно эффективным по значению и скорости разгрузки. Необходимость выполнения дополнительной разгрузки, ее объем, а также факторы, по которым осуществляется ее срабатывание (отключение питающих элементов, сброс активной мощности и т. п.), определяется энергосистемой. 3.3.81. Устройства ЧАПВ используются для уменьшения перерыва питания отключенных потребителей в условиях восстановления частоты в результате реализации резервов генерирующей мощности, ресинхронизации или синхронизации по отключившейся электропередаче. При размещении устройств и распределении нагрузки по очередям ЧАПВ следует учитывать степень ответственности потребителей, вероятность их отключения действием АЧР, сложность и длительность неавтоматического восстановления электропитания (исходя из принятого порядка обслуживания объектов). Как правило, очередность включения нагрузки от ЧАПВ должна быть обратной по сравнению с принятой для АЧР. 3.3.82. Выделение электростанций или генераторов со сбалансированной нагрузкой, выделение генераторов на питание собственных нужд применяется: для сохранения в работе собственных нужд электростанций; для предотвращения полного погашения электростанций при отказе или недостаточной эффективности устройств ограничения снижения частоты по 3.3.79 и 3.3.81; для обеспечения питания особо ответственных потребителей; взамен дополнительной разгрузки, когда это технически и экономически целесообразно. 3.3.83. Необходимость применения дополнительной разгрузки, объемы отключаемой (при АЧР) и включаемой (при ЧАПВ) нагрузки, уставки по времени, частоте и другим контролируемым параметрам для устройств ограничения снижения частоты определяются при эксплуатации энергосистем в соответствии с ПТЭ и другими директивными материалами.
Автоматическое повторное включение (АПВ)
3.3.2. Устройства АПВ должны предусматриваться для быстрого восстановления питания потребителей или межсистемных и внутрисистемных связей путем автоматического включения выключателей, отключенных устройствами релейной защиты.
Должно предусматриваться автоматическое повторное включение:
1) воздушных и смешанных (кабельно-воздушных) линий всех типов напряжением выше 1 кВ. Отказ от применения АПВ должен быть в каждом отдельном случае обоснован. На кабельных линиях 35 кВ и ниже АПВ рекомендуется применять в случаях, когда оно может быть эффективным в связи со значительной вероятностью повреждений с образованием открытой дуги (например, наличие нескольких промежуточных сборок, питание по одной линии нескольких подстанций), а также с целью исправления неселективного действия защиты. Вопрос о применении АПВ на кабельных линиях 110 кВ и выше должен решаться при проектировании в каждом отдельном случае с учетом конкретных условий;
2) шин электростанций и подстанций (см. 3.3.24 и 3.3.25);
3) трансформаторов (см. 3.3.26);
4) ответственных электродвигателей, отключаемых для обеспечения самозапуска других электродвигателей (см. 3.3.38).
Для осуществления АПВ по п. 1-3 должны также предусматриваться устройства АПВ на обходных, шиносоединительных и секционных выключателях.
Допускается в целях экономии аппаратуры выполнение устройства группового АПВ на линиях, в первую очередь кабельных, и других присоединениях 6-10 кВ. При этом следует учитывать недостатки устройства группового АПВ, например возможность отказа в случае, если после отключения выключателя одного из присоединений отключение выключателя другого присоединения происходит до возврата устройства АПВ в исходное положение.
3.3.3. Устройства АПВ должны быть выполнены так, чтобы они не действовали при:
1) отключении выключателя персоналом дистанционно или при помощи телеуправления;
2) автоматическом отключении от релейной защиты непосредственно после включения персоналом дистанционно или при помощи телеуправления;
В сетях 35 кВ и ниже устройства ТАПВ двукратного действия рекомендуется применять в первую очередь для линий, не имеющих резервирования по сети.
В сетях с изолированной или компенсированной нейтралью, как правило, должна применяться блокировка второго цикла АПВ в случае замыкания на землю после АПВ первого цикла (например, по наличию напряжений нулевой последовательности). Выдержка времени ТАПВ во втором цикле должна быть не менее 15-20 с.
3.3.7. Для ускорения восстановления нормального режима работы электропередачи выдержка времени устройства ТАПВ (в особенности для первого цикла АПВ двукратного действия на линиях с односторонним питанием) должна приниматься минимально возможной с учетом времени погасания дуги и деионизации среды в месте повреждения, а также с учетом времени готовности выключателя и его привода к повторному включению.
Выдержка времени устройства ТАПВ на линии с двусторонним питанием должна выбираться также с учетом возможного неодновременного отключения повреждения с обоих концов линии; при этом время действия защит, предназначенных для дальнего резервирования, учитываться не должно. Допускается не учитывать разновременности отключения выключателей по концам линии, когда они отключаются в результате срабатывания высокочастотной защиты.
С целью повышения эффективности ТАПВ однократного действия допускается увеличивать его выдержку времени (по возможности с учетом работы потребителя).
3.3.8. На одиночных линиях 110 кВ и выше с односторонним питанием, для которых допустим в случае неуспешного ТАПВ переход на длительную работу двумя фазами, следует предусматривать ТАПВ двукратного действия на питающем конце линии. Перевод линии на работу двумя фазами может производиться персоналом на месте или при помощи телеуправления.
Для перевода линии после неуспешного АПВ на работу двумя фазами следует предусматривать пофазное управление разъединителями или выключателями на питающем и приемном концах линии.
При переводе линии на длительную работу двумя фазами следует при необходимости принимать меры к уменьшению помех в работе линий связи из-за неполнофазного режима работы линии.
С этой целью допускается ограничение мощности, передаваемой по линии в неполнофазном режиме (если это возможно по условиям работы потребителя).
В отдельных случаях при наличии специального обоснования допускается также перерыв в работе линии связи на время неполнофазного режима.
3.3.9. На линиях, отключение которых не приводит к нарушению электрической связи между генерирующими источниками, например на параллельных линиях с односторонним питанием, следует устанавливать устройства ТАПВ без проверки синхронизма.
3.3.10. На одиночных линиях с двусторонним питанием (при отсутствии шунтирующих связей) должен предусматриваться один из следующих видов трехфазного АПВ (или их комбинаций):
а) быстродействующее ТАПВ (БАПВ)
б) несинхронное ТАПВ (НАПВ);
в) ТАПВ с улавливанием синхронизма (ТАПВ УС).
Кроме того, может предусматриваться однофазное АПВ (ОАПВ) в сочетании с различными видами ТАПВ, если выключатели оборудованы пофазным управлением и не нарушается устойчивость параллельной работы частей энергосистемы в цикле ОАПВ.
Выбор видов АПВ производится, исходя из совокупности конкретных условий работы системы и оборудования с учетом указаний 3.3.11 - 3.3.15.
3.3.11. Быстродействующее АПВ, или БАПВ (одновременное включение с минимальной выдержкой времени с обоих концов), рекомендуется предусматривать на линиях по 3.3.10 для автоматического повторного включения, как правило, при небольшом расхождении угла между векторами ЭДС соединяемых систем. БАПВ может применяться при наличии выключателей, допускающих БАПВ, если после включения обеспечивается сохранение синхронной параллельной работы систем и максимальный электромагнитный момент синхронных генераторов и компенсаторов меньше (с учетом необходимого запаса) электромагнитного момента, возникающего при трехфазном КЗ на выводах машины.
Оценка максимального электромагнитного момента должна производиться для предельно возможного расхождения угла за время БАПВ. Соответственно запуск БАПВ должен производиться лишь при срабатывании быстродействующей защиты, зона действия которой охватывает всю линию.
БАПВ должно блокироваться при срабатывании резервных защит и блокироваться или задерживаться при работе УРОВ.
Если для сохранения устойчивости энергосистемы при неуспешном БАПВ требуется большой объем воздействий от противоаварийной автоматики, применение БАПВ не рекомендуется.
3.3.12. Несинхронное АПВ (НАПВ) может применяться на линиях по 3.3.10 (в основном 110-220 кВ), если:
а) максимальный электромагнитный момент синхронных генераторов и компенсаторов, возникающий при несинхронном включении, меньше (с учетом необходимого запаса) электромагнитного момента, возникающего при трехфазном КЗ на выводах машины, при этом в качестве практических критериев оценки допустимости НАПВ принимаются расчетные начальные значения периодических составляющих токов статора при угле включения 180?;
б) максимальный ток через трансформатор (автотрансформатор) при угле включения 180? меньше тока КЗ на его выводах при питании от шин бесконечной мощности;
в) после АПВ обеспечивается достаточно быстрая ресинхронизация; если в результате несинхронного автоматического повторного включения возможно возникновение длительного асинхронного хода, должны применяться специальные мероприятия для его предотвращения или прекращения.
При соблюдении этих условий НАПВ допускается применять также в режиме ремонта на параллельных линиях.
При выполнении НАПВ необходимо принять меры по предотвращению излишнего срабатывания защиты. С этой целью рекомендуется, в частности, осуществлять включение выключателей при НАПВ в определенной последовательности, например выполнением АПВ с одной из сторон линии с контролем наличия напряжения на ней после успешного ТАПВ с противоположной стороны.
3.3.13. АПВ с улавливанием синхронизма может применяться на линиях по 3.3.10 для включения линии при значительных (примерно до 4%) скольжениях и допустимом угле.
Возможно также следующее выполнение АПВ. На конце линии, который должен включаться первым, производится ускоренное ТАПВ (с фиксацией срабатывания быстродействующей защиты, зона действия которой охватывает всю линию) без контроля напряжения на линии (УТАПВ БК) или ТАПВ с контролем отсутствия напряжения на линии (ТАПВ ОН), а на другом ее конце - ТАПВ с улавливанием синхронизма.
Последнее производится при условии, что включение первого конца было успешным (это может быть определено, например, при помощи контроля наличия напряжения на линии).
Для улавливания синхронизма могут применяться устройства, построенные по принципу синхронизатора с постоянным углом опережения.
Устройства АПВ следует выполнять так, чтобы имелась возможность изменять очередность включения выключателей по концам линии.
При выполнении устройства АПВ УС необходимо стремиться к обеспечению его действия при возможно большей разности частот. Максимальный допустимый угол включения при применении АПВ УС должен приниматься с учетом условий, указанных в 3.3.12. При применении устройства АПВ УС рекомендуется его использование для включения линии персоналом (полуавтоматическая синхронизация).
3.3.14. На линиях, оборудованных трансформаторами напряжения, для контроля отсутствия напряжения (КОН) и контроля наличия напряжения (КНН) на линии при различных видах ТАПВ рекомендуется использовать органы, реагирующие на линейное (фазное) напряжение и на напряжения обратной и нулевой последовательностей. В некоторых случаях, например на линиях без шунтирующих реакторов, можно не использовать напряжение нулевой последовательности.
3.3.15. Однофазное автоматическое повторное включение (ОАПВ) может применяться только в сетях с большим током замыкания на землю. ОАПВ без автоматического перевода линии на длительный неполнофазный режим при устойчивом повреждении фазы следует применять:
а) на одиночных сильно нагруженных межсистемных или внутрисистемных линиях электропередачи;
б) на сильно нагруженных межсистемных линиях 220 кВ и выше с двумя и более обходными связями при условии, что отключение одной из них может привести к нарушению динамической устойчивости энергосистемы;
в) на межсистемных и внутрисистемных линиях разных классов напряжения, если трехфазное отключение линии высшего напряжения может привести к недопустимой перегрузке линий низшего напряжения с возможностью нарушения устойчивости энергосистемы;
г) на линиях, связывающих с системой крупные блочные электростанции без значительной местной нагрузки;
д) на линиях электропередачи, где осуществление ТАПВ сопряжено со значительным сбросом нагрузки вследствие понижения напряжения.
Устройство ОАПВ должно выполняться так, чтобы при выводе его из работы или исчезновении питания автоматически осуществлялся перевод действия защит линии на отключение трех фаз помимо устройства.
Выбор поврежденных фаз при КЗ на землю должен осуществляться при помощи избирательных органов, которые могут быть также использованы в качестве дополнительной быстродействующей защиты линии в цикле ОАПВ, при ТАПВ, БАПВ и одностороннем включении линии оперативным персоналом.
Выдержка временем ОАПВ должна отстраиваться от времени погасания дуги и деионизации среды в месте однофазного КЗ в неполнофазном режиме с учетом возможности неодновременного срабатывания защиты по концам линии, а также каскадного действия избирательных органов.
3.3.16. На линиях по 3.3.15 ОАПВ должно применяться в сочетании с различными видами ТАПВ. При этом должна быть предусмотрена возможность запрета ТАПВ во всех случаях ОАПВ или только при неуспешном ОАПВ. В зависимости от конкретных условий допускается осуществление ТАПВ после неуспешного ОАПВ. В этих случаях предусматривается действие ТАПВ сначала на одном конце линии с контролем отсутствия напряжения на линии и с увеличенной выдержкой времени.
3.3.17. На одиночных линиях с двусторонним питанием, связывающих систему с электростанцией небольшой мощности, могут применяться ТАПВ с автоматической самосинхронизацией (АПВС) гидрогенераторов для гидроэлектростанций и ТАПВ в сочетании с делительными устройствами - для гидро- и теплоэлектростанций.
3.3.18. На линиях с двусторонним питанием при наличии нескольких обходных связей следует применять:
1) при наличии двух связей, а также при наличии трех связей, если вероятно одновременное длительное отключение двух из этих связей (например, двухцепной линии):
несинхронное АПВ (в основном для линий 110-220 кВ и при соблюдении условий, указанных в 3.3.12, но для случая отключения всех связей);
АПВ с проверкой синхронизма ( при невозможности выполнения несинхронного АПВ по причинам, указанным в 3.3.12, но для случая отключения всех связей).
Для ответственных линий при наличии двух связей, а также при наличии трех связей, две из которых - двухцепная линия, при невозможности применения НАПВ по причинам, указанным в 3.3.12, разрешается применять устройства ОАПВ, БАПВ или АПВ УС (см. 3.3.11, 3.3.13, 3.3.15). При этом устройства ОАПВ и БАПВ следует дополнять устройством АПВ с проверкой синхронизма;
2) при наличии четырех и более связей, а также при наличии трех связей, если в последнем случае одновременное длительное отключение двух из этих связей маловероятно (например, если все линии одноцепные), - АПВ без проверки синхронизма.
3.3.19. Устройства АПВ с проверкой синхронизма следует выполнять на одном конце линии с контролем отсутствия напряжения на линии и с контролем наличия синхронизма, на другом конце - только с контролем наличия синхронизма. Схемы устройства АПВ с проверкой синхронизма линии должны выполняться одинаковыми на обоих концах с учетом возможности изменения очередности включения выключателей линии при АПВ.
Рекомендуется использовать устройство АПВ с проверкой синхронизма для проверки синхронизма соединяемых систем при включении линии персоналом.
3.3.20. Допускается совместное применение нескольких видов трехфазного АПВ на линии, например БАПВ и ТАПВ с проверкой синхронизма. Допускается также использовать различные виды устройств АПВ на разных концах линии, например УТАПВ БК (см. 3.3.13) на одном конце линии и ТАПВ с контролем наличия напряжения и синхронизма на другом.
3.3.21. Допускается сочетание ТАПВ с неселективными быстродействующими защитами для исправления неселективного действия последних. В сетях, состоящих из ряда последовательно включенных линий, при применении для них неселективных быстродействующих защит для исправления их действия рекомендуется применять поочередное АПВ; могут также применяться устройства АПВ с ускорением защиты до АПВ или с кратностью действия (не более трех), возрастающей по направлению к источнику питания.
3.3.22. При применении трехфазного однократного АПВ линий, питающих трансформаторы, со стороны высшего напряжения которых устанавливаются короткозамыкатели и отделители, для отключения отделителя в бестоковую паузу время действия устройства АПВ должно быть отстроено от суммарного времени включения короткозамыкателя и отключения отделителя. При применении трехфазного АПВ двукратного действия (см. 3.3.6) время действия АПВ в первом цикле по указанному условию не должно увеличиваться, если отключение отделителя предусматривается в бестоковую паузу второго цикла АПВ.
Для линий, на которые вместо выключателей устанавливаются отделители, отключение отделителей в случае неуспешного АПВ в первом цикле должно производиться в бестоковую паузу второго цикла АПВ.
3.3.23. Если в результате действия АПВ возможно несинхронное включение синхронных компенсаторов или синхронных электродвигателей и если такое включение для них недопустимо, а также для исключения подпитки от этих машин места повреждения следует предусматривать автоматическое отключение этих синхронных машин при исчезновении питания или переводить их в асинхронный режим отключением АГП с последующим автоматическим включением или ресинхронизацией после восстановления напряжения в результате успешного АПВ.
Для подстанций с синхронными компенсаторами или синхронными электродвигателями должны применяться меры, предотвращающие излишние срабатывания АЧР при действии АПВ.
3.3.24. АПВ шин электростанций и подстанций при наличии специальной защиты шин и выключателей, допускающих АПВ, должно выполняться по одному из двух вариантов:
1) автоматическим опробованием (постановка шин под напряжение выключателем от АПВ одного из питающих элементов);
2) автоматической сборкой схемы; при этом первым от устройства АПВ включается один из питающих элементов (например, линия, трансформатор), при успешном включении этого элемента производится последующее, возможно более полное автоматическое восстановление схемы доаварийного режима путем включения других элементов.
Автоматическое предотвращение нарушений устойчивости
3.3.72. Устройства автоматического предотвращения нарушений устойчивости энергосистем должны предусматриваться в зависимости от конкретных условий гам, где это технически и экономически целесообразно, - для сохранения динамической устойчивости и обеспечения нормативного запаса статической устойчивости в послеаварийных режимах. Устройства автоматического предотвращения нарушения устойчивости могут предусматриваться для действия в случаях: а) отключения линии без повреждения, а также при повреждениях в результате однофазных КЗ при работе основной защиты и ОАПВ в возможных режимах повышенной загрузки электропередач и в ремонтных схемах сети; допускается применение устройств автоматики при этих повреждениях и в нормальных схемах и режимах энергосистемы, если нарушение устойчивости в результате отказа автоматики не может привести к потере значительной части нагрузки энергосистемы (например, за счет действия АЧР); б) отключения линий в результате многофазных КЗ при работе основной защиты в нормальной и ремонтной схемах сети; допускается не учитывать наиболее редкие режимы повышенной загрузки электропередач; в) отказов выключателя с действием УРОВ при КЗ в нормальном режиме работы энергосистемы и в нормальной схеме работы сети; г) полного разделения энергосистемы на несинхронно работающие части электропередач в нормальном режиме; д) значительного аварийного дефицита или избытка мощности в одной из соединяемых частей энергообъединения; е) работы устройств БАПВ или АПВ в нормальных схеме и режиме. 3.3.73. Устройства автоматического предотвращения нарушений устойчивости могут воздействовать на: а) отключение части генераторов гидроэлектростанций и как исключение - генераторов или блоков тепловых электростанций; б) быстрое снижение или увеличение нагрузки паровыми турбинами в пределах возможностей теплосилового оборудования (без последующего автоматического восстановления прежней нагрузки); в) отключение (в исключительных случаях) части нагрузки потребителей, легко переносящих кратковременный перерыв электроснабжения (специальное автоматическое отключение нагрузки); г) деление энергосистем (если указанные выше мероприятия недостаточны); д) кратковременное быстрое снижение нагрузки паровых турбин (с последующим автоматическим восстановлением прежней нагрузки).
Устройства автоматического предотвращения нарушений устойчивости могут изменять режим работы устройств продольной и поперечной емкостной компенсации и другого оборудования электропередачи, например шунтирующих реакторов, автоматических регуляторов возбуждения генераторов и т. п. Снижение активной мощности электростанций при повреждениях по 3.3.72, пп. а и б, желательно ограничивать тем объемом и в основном теми случаями, когда это не ведет к действию АЧР в энергосистеме или к другим неблагоприятным последствиям. 3.3.74. Интенсивность управляющих воздействий, подаваемых устройствами автоматического предотвращения нарушений устойчивости (например, мощность отключаемых генераторов или глубина разгрузки турбин), должна определяться интенсивность возмущающего воздействия (например, сброс передаваемой активной мощности при возникновении КЗ и продолжительность последнего) или переходного процесса, фиксируемых автоматически, а также тяжестью исходного режима, фиксируемой также автоматически или, в исключительных случаях, персоналом.
Автоматическое предотвращение перегрузки оборудования
3.3.87. Устройства автоматического предотвращения перегрузки оборудования предназначены для ограничения длительности такого тока в линиях, трансформаторах, устройствах продольной компенсации, который превышает наибольший длительно допустимый и допускается менее 10-20 мин. Указанные устройства должны воздействовать на разгрузку электростанций, могут воздействовать на отключение потребителей и деление системы, а в качестве последней ступени - на отключение перегружающегося оборудования. При этом должны быть приняты меры по предотвращению нарушений устойчивости и других неблагоприятных последствий.
Автоматическое прекращение асинхронного режима
3.3.75. Для прекращения асинхронного режима (АР) в случае его возникновения должны в основном применяться устройства автоматики, отличающие асинхронный режим от синхронных качаний, КЗ или других ненормальных режимов работы. По возможности указанные устройства следует выполнять так, чтобы они прежде всего способствовали осуществлению мероприятий, направленных на облегчение условий ресинхронизации, например: быстрому набору нагрузки турбинами или частичному отключению потребителей (в той части энергосистемы, в которой возник дефицит мощности); уменьшению генерирующей мощности путем воздействия на регуляторы скорости турбин или отключения части генераторов (в той части энергосистемы, в которой возник избыток мощности). Автоматическое разделение энергосистемы в заданных точках применяется после возникновения АР, если указанные мероприятия не приводят к ресинхронизации после прохождения заданного числа циклов качаний, или при длительности асинхронного хода больше заданного предела. В случаях недопустимости асинхронного режима, опасности или малой эффективности ресинхронизации для прекращения АР необходимо использовать деление с наименьшим временем, при котором обеспечивается устойчивость по другим связям и селективное действие автоматики.
Автоматическое регулирование частоты и активной мощности (АРЧМ)
3.3.63. Системы автоматического регулирования частоты и активной мощности (АРЧМ) предназначены для: поддержания частоты в энергообъединениях и изолированных энергосистемах в нормальных режимах согласно требованиям ГОСТ на качество электрической энергии; регулирования обменных мощностей энергообъединений и ограничения перетоков мощности по контролируемым внешним и внутренним связям энергообъединений и энергосистем; распределения мощности (в том числе экономичного) между объектами управления на всех уровнях диспетчерского управления (между объединенными энергосистемами в "ЕЭС России", энергосистемами в ОЭС, электростанциями в энергосистемах и агрегатами или энергоблоками в пределах электростанций). 3.3.64. Системы АРЧМ должны обеспечивать (при наличии необходимого регулировочного диапазона) на управляемых электростанциях поддержание среднего отклонения частоты от заданного значения в пределах ±0,1 Гц в десятиминутных интервалах и ограничение перетока мощности по контролируемым связям с подавлением не менее чем на 70% амплитуды колебаний перетока мощности с периодом 2 мин и более. 3.3.65. В систему АРЧМ должны входить: устройства автоматического регулирования частоты, обменной мощности и ограничения перетоков на диспетчерских пунктах "ЕЭС России" и ОЭС; устройства распределения управляющих воздействий от вышестоящих систем АРЧМ между управляемым электростанциями и устройства ограничения перетоков по контролируемым внутренним связям на диспетчерских пунктах энергосистем; устройства управления активной мощностью на электростанциях, привлекаемых к участию в автоматическом управлении мощностью; датчики перетоков активной мощности и средства телемеханики. 3.3.66. Устройства АРЧМ на диспетчерских пунктах должны обеспечивать выявление отклонений фактического режима работы от заданного, формирование и передачу управляющих воздействий для диспетчерских пунктов нижнего уровня управления и для электростанций, привлекаемых к автоматическому управлению мощностью. 3.3.67.
Устройства автоматического управления мощностью электростанций должны обеспечивать: прием и преобразование управляющих воздействий, поступающих с диспетчерских пунктов вышестоящего уровня управления, и формирование управляющих воздействий на уровне управления электростанций; формирование управляющих воздействий на отдельные агрегаты (энергоблоки); поддержание мощности агрегатов (энергоблоков) в соответствии с полученными управляющими воздействиями. 3.3.68. Управление мощностью электростанции должно осуществляться со статизмом по частоте, изменяемым в пределах от 3 до 6%. 3.3.69. На гидроэлектростанциях системы управления мощностью должны иметь автоматические устройства, обеспечивающие пуск и останов агрегатов, а при необходимости также перевод агрегатов в режимы синхронного компенсатора и генераторный в зависимости от условий и режима работы электростанций и энергосистемы с учетом имеющихся ограничений в работе агрегатов. Гидроэлектростанции, мощность которых определяется режимом водотока, рекомендуется оборудовать автоматическими регуляторами мощности по водотоку. 3.3.70. Устройства АРЧМ должны допускать оперативное изменение параметров настройки при изменении режимов работы объекта управления, оснащаться элементами сигнализации, блокировками и защитами, предотвращающими неправильные их действия при нарушении нормальных режимов работы объектов управления, при неисправностях в самих устройствах, а также исключающими те действия, которые могут помешать функционированию устройств противоаварийной автоматики. На тепловых электростанциях устройства АРЧМ должны быть оборудованы элементами, предотвращающими те изменения технологических параметров выше допустимых пределов, которые вызваны действием этих устройств на агрегаты (энергоблоки). 3.3.71. Средства телемеханики должны обеспечивать ввод информации о перетоках по контролируемым внутрисистемным и межсистемным связям, передачу управляющих воздействий и сигналов от устройств АРЧМ на объекты управления, а также передачу необходимой информации на вышестоящий уровень управления.Суммарное значение [запаздывания] сигналов в средствах телемеханики и устройствах АРЧМ не должно превышать 5 с.
Автоматическое регулирование возбуждения, напряжения и реактивной мощности
3.3.51. Устройства автоматического регулирования возбуждения, напряжения и реактивной мощности предназначены для: поддержания напряжения в электрической системе и у электроприемников по заданным характеристикам при нормальной работе электроэнергетической системы; распределения реактивной нагрузки между источниками реактивной мощности по заданному закону; повышения статической и динамической устойчивости электрических систем и демпфирования колебаний в переходных режимах. 3.3.52. Синхронные машины (генераторы, компенсаторы, электродвигатели) должны быть оборудованы устройствами АРВ. Автоматические регуляторы возбуждения должны соответствовать требованиям ГОСТ на системы возбуждения и техническим условиям на оборудование систем возбуждения. Для генераторов и синхронных компенсаторов мощностью менее 2,5 МВт, за исключением генераторов электростанций, работающих изолированно или в энергосистеме небольшой мощности, допускается применять только устройства релейной форсировки возбуждения. Синхронные электродвигатели должны быть оборудованы устройствами АРВ в соответствии с 5.3.12 и 5.3.13. 3.3.53. Должна быть обеспечена высокая надежность питания АРВ и других устройств системы возбуждения от трансформаторов напряжения, а также высокая надежность соответствующих цепей. При подключении АРВ к трансформатору напряжения, имеющему предохранители на первичной стороне: АРВ и другие устройства системы возбуждения, потеря питания которых может привести к перегрузке или недопустимому снижению возбуждения машины, должны присоединяться к их вторичным выводам без предохранителей и автоматических выключателей; устройство релейной форсировки должно выполняться так, чтобы исключалась возможность его ложной работы при перегорании одного из предохранителей с первичной стороны трансформаторов напряжения. При подключении АРВ к трансформатору напряжения, не имеющему предохранителей на первичной стороне: АРВ и другие устройства системы возбуждения должны присоединяться к их вторичным выводам через автоматические выключатели; должны быть предусмотрены мероприятия по использованию вспомогательных контактов автоматического выключателя, исключающие перегрузку или недопустимое снижение возбуждения машины в случае отключения автоматического выключателя.
К трансформаторам напряжения, к которым подключаются АРВ и другие устройства системы возбуждения, как правило, не должны присоединяться другие устройства и приборы. В отдельных случаях допускается присоединение этих устройств и приборов через отдельные автоматические выключатели или предохранители. 3.3.54. Устройства АРВ гидрогенераторов должны быть выполнены так, чтобы в случае сброса нагрузки при исправном регуляторе скорости исключалось срабатывание защиты от повышения напряжения. При необходимости устройство АРВ может быть дополнено релейным устройством быстродействующего развозбуждения. 3.3.55. Схема устройства релейной форсировки возбуждения должна предусматривать возможность перевода его действия на резервный возбудитель при замене им основного возбудителя. 3.3.56. Устройства компаундирования возбуждения должны присоединяться к трансформаторам тока со стороны вывода генератора или синхронного компенсатора (со стороны шин). 3.3.57. Для синхронных генераторов и компенсаторов с непосредственным охлаждением, генераторов мощностью 15 МВт и более и компенсаторов мощностью 15 МВАр и более, электростанций и подстанций без постоянного дежурства персонала в помещении щита управления должно быть предусмотрено автоматическое ограничение перегрузки с выдержкой времени, зависящей от кратности перегрузки. До освоения серийного выпуска устройств автоматического ограничения перегрузки с зависимой выдержкой времени для машин мощностью до 200 МВт (МВАр) допускается устанавливать устройства ограничения с независимой по времени характеристикой. Устройство автоматического ограничения перегрузки не должно препятствовать форсировке возбуждения в течение времени, которое допускается для соответствующего исполнения машины. 3.3.58. Для генераторов мощностью 100 МВт и более и для компенсаторов мощностью 100 МВАр и более следует устанавливать быстродействующие системы возбуждения с АРВ сильного действия. В отдельных случаях, определяемых условиями работы электростанции в энергосистеме, допускается устанавливать АРВ другого типа, а также медленно действующие системы возбуждения. 3.3.59.
Система возбуждения и устройства АРВ должны обеспечивать устойчивое регулирование в пределах от наименьшего допустимого до наибольшего допустимого значения тока возбуждения. Для синхронных компенсаторов с нереверсивной системой возбуждения регулирование должно обеспечиваться начиная от значения тока ротора, практически равного нулю, а для компенсаторов с реверсивной системой возбуждения - от наибольшего допустимого значения отрицательного тока возбуждения. Для машин, работающих в блоке с трансформаторами, должна быть предусмотрена возможность токовой компенсации потери напряжения в трансформаторе. 3.3.60. Генераторы мощностью 2,5 МВт и более гидро- и тепловых электростанций с числом агрегатов четыре и более должны оснащаться общестанционными АСУ технологическими процессами или (при их отсутствии) системами группового управления возбуждением. Эти системы на генераторах тепловых электростанций рекомендуется выполнять в зависимости от схемы, режима и мощности электростанции. 3.3.61. Трансформаторы с РПН распределительных подстанций и собственных нужд электростанций, а также линейные регуляторы распределительных подстанций для поддержания или заданного изменения напряжения должны оснащаться системой автоматического регулирования коэффициента трансформации. При необходимости автоматические регуляторы должны обеспечивать встроечное регулирование напряжения. Подстанции, на которых предусматривается параллельная работа трансформаторов (автотрансформаторов) с автоматическим регулированием коэффициента трансформации, должны оснащаться общеподстанционной автоматизированной системой управления технологическими процессами или системой группового регулирования, исключающей появление недопустимых уравнительных токов между трансформаторами. 3.3.62. Конденсаторные установки должны быть оборудованы устройствами автоматического регулирования в соответствии с гл. 5.6.
Автоматическое включение резервного питания и оборудования (АВР)
3.3.30. Устройства АВР должны предусматриваться для восстановления питания потребителей путем автоматического присоединения резервного источника питания при отключении рабочего источника питания, приводящем к обесточению электроустановок потребителя. Устройства АВР должны предусматриваться также для автоматического включения резервного оборудования при отключении рабочего оборудования, приводящем к нарушению нормального технологического процесса. Устройства АВР также рекомендуется предусматривать, если при их применении возможно упрощение релейной защиты, снижение токов КЗ и удешевление аппаратуры за счет замены кольцевых сетей радиально-секционированными и т. п. Устройства АВР могут устанавливаться на трансформаторах, линиях, секционных и шиносоединительных выключателях, электродвигателях и т. п. 3.3.31. Устройство АВР, как правило, должно обеспечивать возможность его действия при исчезновении напряжения на шинах питаемого элемента, вызванном любой причиной, в том числе КЗ на этих шинах (последнее - при отсутствии АПВ шин, см. также 3.3.42). 3.3.32. Устройство АВР при отключении выключателя рабочего источника питания должно включать, как правило, без дополнительной выдержки времени, выключатель резервного источника питания (см. также 3.3.41). При этом должна быть обеспечена однократность действия устройства. 3.3.33. Для обеспечения действия АВР при обесточении питаемого элемента в связи с исчезновением напряжения со стороны питания рабочего источника, а также при отключении выключателя с приемной стороны (например, для случаев, когда релейная защита рабочего элемента действует только на отключение выключателей со стороны питания) в схеме АВР в дополнение к указанному в 3.3.32 должен предусматриваться пусковой орган напряжения. Указанный пусковой орган при исчезновении напряжения на питаемом элементе и при наличии напряжения со стороны питания резервного источника должен действовать с выдержкой времени на отключение выключателя рабочего источника питания с приемной стороны.
Пусковой орган напряжения АВР не должен предусматриваться, если рабочий и резервный элементы имеют один источник питания. 3.3.34. Для трансформаторов и линий малой протяженности с целью ускорения действия АВР целесообразно выполнять релейную защиту с действием на отключение не только выключателя со стороны питания, но и выключателя с приемной стороны. С этой же целью в наиболее ответственных случаях (например, на собственных нуждах электростанций) при отключении по каким-либо причинам выключателя только со стороны питания должно быть обеспечено немедленное отключение выключателя с приемной стороны по цепи блокировки. 3.3.35. Минимальный элемент напряжения пускового органа АВР, реагирующий на исчезновение напряжения рабочего источника, должен быть отстроен от режима самозапуска электродвигателей и от снижения напряжения при удаленных КЗ. Напряжение срабатывания элемента контроля напряжения на шинах резервного источника пускового органа АВР должно выбираться по возможности, исходя из условия самозапуска электродвигателей. Время действия пускового органа АВР должно быть больше времени отключения внешних КЗ, при которых снижение напряжения вызывает срабатывание элемента минимального напряжения пускового органа, и, как правило, больше времени действия АПВ со стороны питания. Минимальный элемент напряжения пускового органа АВР, как правило, должен быть выполнен так, чтобы исключалась его ложная работа при перегорании одного из предохранителей трансформатора напряжения со стороны обмотки высшего или низшего напряжения; при защите обмотки низшего напряжения автоматическим выключателем при его отключении действие пускового органа должно блокироваться. Допускается не учитывать данное требование при выполнении устройств АВР в распределительных сетях 6-10 кВ, если для этого требуется специальная установка трансформатора напряжения. 3.3.36. Если при использовании пуска АВР по напряжению время его действия может оказаться недопустимо большим (например, при наличии в составе нагрузки значительной доли синхронных электродвигателей), рекомендуется применять в дополнение к пусковому органу напряжения пусковые органы других типов (например, реагирующие на исчезновение тока, снижение частоты, изменение направления мощности и т.
п.). В случае применения пускового органа частоты последний при снижении частоты со стороны рабочего источника питания до заданного значения и при нормальной частоте со стороны резервного питания должен действовать с выдержкой времени на отключение выключателя рабочего источника питания. При технологической необходимости может выполняться пуск устройства автоматического включения резервного оборудования от различных специальных датчиков (давления, уровня и т. п.). 3.3.37. Схема устройства АВР источников питания собственных нужд электростанций после включения резервного источника питания взамен одного из отключающихся рабочих источников должна сохранять возможность действия при отключении других рабочих источников питания. 3.3.38. При выполнении устройств АВР следует проверять условия перегрузки резервного источника питания и самозапуска электродвигателей и, если имеет место чрезмерная перегрузка или не обеспечивается самозапуск, выполнять разгрузку при действии АВР (например, отключение неответственных, а в некоторых случаях и части ответственных электродвигателей; для последних рекомендуется применение АПВ). 3.3.39. При выполнении АВР должна учитываться недопустимость его действия на включение потребителей, отключенных устройствами АЧР. С этой целью должны применяться специальные мероприятия (например, блокировка по частоте); в отдельных случаях при специальном обосновании невозможности выполнения указанных мероприятий допускается не предусматривать АВР. 3.3.40. При действии устройства АВР, когда возможно включение выключателя на КЗ, как правило, должно предусматриваться ускорение действия защиты этого выключателя (см. также 3.3.4). При этом должны быть приняты меры для предотвращения отключений резервного питания по цепи ускорения защиты за счет бросков тока включения. С этой целью на выключателях источников резервного питания собственных нужд электростанций ускорение защиты должно предусматриваться только в случае, если ее выдержка времени превышает 1-1,2 с; при этом в цепь ускорения должна быть введена выдержка времени около 0,5 с.
Для прочих электроустановок значения выдержек времени принимаются, исходя из конкретных условий. 3.3.41. В случаях, если в результате действия АВР возможно несинхронное включение синхронных компенсаторов или синхронных электродвигателей и если оно для них недопустимо, а также для исключения подпитки от этих машин места повреждения следует при исчезновении питания автоматически отключать синхронные машины или переводить их в асинхронный режим отключением АГП с последующим автоматическим включением или ресинхронизацией после восстановления напряжения в результате успешного АВР. Для предотвращения включения резервного источника от АВР до отключения синхронных машин допускается применять замедление АВР. Если последнее недопустимо для остальной нагрузки, допускается при специальном обосновании отключать от пускового органа АВР линию, связывающую шины рабочего питания с нагрузкой, содержащей синхронные электродвигатели. Для подстанций с синхронными компенсаторами или синхронными электродвигателями должны применяться меры, предотвращающие неправильную работу АЧР при действии АВР (см. 3.3.79). 3.3.42. С целью предотвращения включения резервного источника питания на КЗ при неявном резерве, предотвращения его перегрузки, облегчения самозапуска, а также восстановления наиболее простыми средствами нормальной схемы электроустановки после аварийного отключения и действия устройства автоматики рекомендуется применять сочетание устройств АВР и АПВ. Устройства АВР должны действовать при внутренних повреждениях рабочего источника, АПВ - при прочих повреждениях. После успешного действия устройств АПВ или АВР должно, как правило, обеспечиваться возможно более полное автоматическое восстановление схемы доаварийного режима (например, для подстанций с упрощенными схемами электрических соединений со стороны высшего напряжения - отключение включенного при действии АВР секционного выключателя на стороне низшего напряжения после успешного АПВ питающей линии).
Автоматика и телемеханика
Область применения. Общие требования Автоматическое повторное включение (АПВ) Автоматическое включение резервного питания и оборудования (АВР) Включение генераторов Автоматическое регулирование возбуждения, напряжения и реактивной мощности Автоматическое регулирование частоты и активной мощности (АРЧМ) Автоматическое предотвращение нарушений устойчивости Автоматическое прекращение асинхронного режима Автоматическое ограничение снижения частоты Автоматическое ограничение повышения частоты Автоматическое ограничение снижения напряжения Автоматическое ограничение повышения напряжения Автоматическое предотвращение перегрузки оборудования Телемеханика
Биологическая защита от воздействия электрических и магнитных полей
4.2.72. На ПС и в ОРУ 330 кВ и выше в зонах пребывания обслуживающего персонала (пути передвижения обслуживающего персонала, рабочие места) напряженность электрического поля (ЭП) должна быть в пределах допустимых уровней, установленных государственными стандартами. 4.2.73. На ПС и в РУ напряжением 1-20 кВ в зонах пребывания обслуживающего персонала напряженность магнитного поля (МП) должна соответствовать требованиям санитарных правил и норм. 4.2.74. В ОРУ 330 кВ и выше допустимые уровни напряженности ЭП в зонах пребывания обслуживающего персонала должны обеспечиваться, как правило, конструктивно-компоновочными решениями с использованием стационарных и инвентарных экранирующих устройств. Напряженность ЭП в этих зонах следует определять по результатам измерений в ОРУ с идентичными конструктивно-компоновочными решениями или расчетным путем. 4.2.75. На ПС и в ОРУ напряжением 330 кВ и выше в целях снижения воздействия ЭП на персонал необходимо: применять металлоконструкции ОРУ из оцинкованных, алюминированных или алюминиевых элементов; лестницы для подъема на траверсы металлических порталов располагать, как правило, внутри их стоек (лестницы, размещенные снаружи, должны быть огорожены экранирующими устройствами, обеспечивающими внутри допустимые уровни напряженности ЭП). 4.2.76. На ПС и в ОРУ 330 кВ и выше для снижения уровня напряженности ЭП следует исключать соседство одноименных фаз в смежных ячейках. 4.2.77. На ПС напряжением 330 кВ и выше производственные и складские здания следует размещать вне зоны влияния ЭП. Допускается их размещение в этой зоне при обеспечении экранирования подходов к входам в эти здания. Экранирование подходов, как правило, не требуется, если вход в здание, расположенное в зоне влияния, находится с внешней стороны по отношению к токоведущим частям. 4.2.78. Производственные помещения, рассчитанные на постоянное пребывание персонала, не должны размещаться в непосредственной близости от токоведущих частей ЗРУ и других электроустановок, а также под и над токоведущими частями оборудования (например, токопроводами), за исключением случаев, когда рассчитываемые уровни магнитных полей не превышают предельно допустимых значений.
Зоны пребывания обслуживающего персонала должны быть расположены на расстояниях от экранированных токопроводов и (или) шинных мостов, обеспечивающих соблюдение предельно допустимых уровней магнитного поля. 4.2.79. Токоограничивающие реакторы и выключатели не должны располагаться в соседних ячейках распредустройств 6-10 кВ. При невозможности обеспечения этого требования между ячейками токоограничивающих реакторов и выключателей должны устанавливаться стационарные ферромагнитные экраны. 4.2.80. Экранирование источников МП или рабочих мест при необходимости обеспечения допустимых уровней МП должно осуществляться посредством ферромагнитных экранов, толщина и геометрические размеры которых следует рассчитывать по требуемому коэффициенту экранирования: Kэ = Hв / Hдоп где Hв - наибольшее возможное значение напряженности МП на экранируемом рабочем месте, А/м; Hдоп = 80 А/м - допустимое значение напряженности МП. Для рабочих мест, где пребывание персонала по характеру и условиям выполнения работ является непродолжительным, Hдоп определяется исходя из требований санитарных правил и норм.
Большие переходы
2.5.150. Участок большого перехода должен быть ограничен концевыми опорами (концевыми устройствами в виде бетонных якорей и др.), выделяющими большой переход в самостоятельную часть ВЛ, прочность и устойчивость которой не зависят от влияния смежных участков ВЛ. 2.5.151. В зависимости от типа крепления проводов опоры, устанавливаемые между концевыми (К) опорами (устройствами), могут быть: 1) промежуточными (П) - с креплением всех проводов на опоре с помощью поддерживающих гирлянд изоляторов; 2) анкерными (А) - с креплением всех проводов на опоре с помощью натяжных гирлянд изоляторов; 3) комбинированными (ПА) - со смешанным креплением проводов на опоре с помощью как поддерживающих, так и натяжных гирлянд изоляторов. 2.5.152. Переходные опоры, ограничивающие пролет пересечения, должны быть анкерными концевыми. Допускается применение промежуточных опор и анкерных опор облегченного типа для переходов со сталеалюминиевыми проводами или проводами из термообработанного алюминиевого сплава со стальным сердечником с сечением алюминиевой части для обоих типов проводов 120 мм2 и более или стальными канатами типа ТК в качестве проводов с сечением канатов 50 мм2 и более. При этом количество промежуточных опор между концевыми опорами должно соответствовать требованиям 2.5.153. 2.5.153. В зависимости от конкретных условий могут применяться следующие схемы переходов: 1) однопролетные на концевых опорах К-К; 2) двухпролетные с опорами К-П-К, К-ПА-К; 3) трехпролетные с опорами К-П-П-К, К-ПА-ПА-К; 4) четырехпролетные с опорами К-П-П-П-К, К-ПА-ПА-ПА-К (только для нормативной толщины стенки гололеда 15 мм и менее и длин переходных пролетов не более 1100 м); 5) многопролетные с опорами К-А...А-К; 6) при применении опор П или ПА переход должен быть разделен опорами А на участки с числом опор П или ПА на каждом участке не более двух, т. е. К-П-П-А...А-П-П-К, К-ПА-ПА-А...А-ПА-ПА-К (или не более трех по п. 4). 2.5.154. Ветровое давление на провода и тросы больших переходов через водные пространства определяется согласно 2.5.44, но с учетом следующих дополнительных требований. 1.
Для перехода, состоящего из одного пролета, высота расположения приведенного центра тяжести проводов или тросов определяется по формуле где hср1, hср2 - высота крепления тросов или средняя высота крепления проводов к изоляторам на опорах перехода, отсчитываемая от меженного уровня реки, нормального горизонта пролива, канала, водохранилища, а для пересечений ущелий, оврагов и других препятствий - от отметки земли в местах установки опор, м; f - стрела провеса провода или троса при высшей температуре в середине пролета, м. 2. Для перехода, состоящего из нескольких пролетов, ветровое давление на провода или тросы определяется для высоты hпр, соответствующей средневзвешенной высоте приведенных центров тяжести проводов или тросов во всех пролетах и вычисляемой по формуле где hпр1, hпр2, …, hпр n - высоты приведенных центров тяжести проводов или тросов над меженным уровнем реки, нормальным горизонтом пролива, канала, водохранилища в каждом из пролетов, а для пересечений ущелий, оврагов и других препятствий - над среднеарифметическим значением отметок земли в местах установки опор, м. При этом, если пересекаемое водное пространство имеет высокий незатопляемый берег, на котором расположены как переходные, так и смежные с ними опоры, то высоты приведенных центров тяжести в пролете, смежном с переходным, отсчитываются от отметки земли в этом пролете; l1, l2, …, ln - длины пролетов, входящих в переход, м. Нормативное ветровое давление на провода, тросы и конструкции опор больших переходов, сооружаемых в местах, защищенных от поперечных ветров, уменьшать не допускается. 2.5.155. Переходы могут выполняться одноцепными и двухцепными. Двухцепными рекомендуется выполнять переходы в населенной местности, в районах промышленной застройки, а также при потребности в перспективе второго перехода в ненаселенной или труднодоступной местности. 2.5.156. На одноцепных переходах для ВЛ 330 кВ и ниже рекомендуется применять треугольное расположение фаз, допускается горизонтальное расположение фаз; для ВЛ 500-750 кВ следует, как правило, применять горизонтальное расположение фаз. 2.5.157.
На двухцепных переходах ВЛ до 330 кВ рекомендуется расположение проводов в трех ярусах, допускается также расположение проводов в двух ярусах. На двухцепных переходах ВЛ 500 кВ рекомендуется применение опор анкерного типа с расположением проводов в одном (горизонтальном) или в двух ярусах. 2.5.158. Расстояния между проводами, а также между проводами и тросами из условий работы в пролете должны выбираться в соответствии с 2.5.88 - 2.5.92 с учетом дополнительных требований: 1) значение коэффициента Kг в табл. 2.5.13 необходимо увеличивать на: 0,2 - при отношении нагрузок Рг.п/РI в интервале от 2 до 6,99; 0,4 - при отношении нагрузок Рг.п/РI равном 7 и более; 2) расстояния между ближайшими фазами одноцепных и двухцепных ВЛ должны также удовлетворять требованиям 2.5.159, 2.5.160. 2.5.159. Для обеспечения нормальной работы проводов в пролете в любом районе по пляске проводов, при расположении их в разных ярусах, расстояния между соседними ярусами промежуточных переходных опор высотой более 50 м и смещение по горизонтали должны быть:
Расстояния, м, не менее | 7,5 | 8 | 9 | 11 | 14 | 18 |
Смещение по горизонтали, м, не менее | 2 | 2 | 2,5 | 3,5 | 5 | 7 |
ВЛ натяжением, кВ | 35-110 | 150 | 220 | 330 | 500 | 750 |
Расстояние между осями фаз, м | 8 | 9 | 10 | 12 | 15 | 19 |
ВЛ напряжением, кВ | 35-110 | 150 | 220 | 330 | 500 | 750 |
В случае использования грозозащитных тросов для организации каналов высокочастотной связи рекомендуется применение в качестве тросов проводов из термообработанного алюминиевого сплава со стальным сердечником и сталеалюминиевых проводов, а также тросов со встроенными оптическими кабелями. 2.5.163. Одиночные и расщепленные провода и тросы должны быть защищены от вибрации установкой с каждой стороны переходного пролета длиной до 500 м - одного гасителя вибрации на каждом проводе и тросе и длиной от 500 до 1500 м - не менее двух разнотипных гасителей вибрации на каждом проводе и тросе. Защита от вибрации проводов и тросов в пролетах длиной более 1500 м, а также независимо от длины пролета для проводов диаметром более 38 мм и проводов с тяжением при среднегодовой температуре более 180 кН должна производиться по специальному проекту. 2.5.164. На переходах ВЛ должны применяться, как правило, стеклянные изоляторы. 2.5.165. Количество изоляторов в гирляндах переходных опор определяется в соответствии с гл. 1.9. 2.5.166. Поддерживающие и натяжные гирлянды изоляторов следует предусматривать с количеством цепей не менее двух с раздельным креплением к опоре. Многоцепные натяжные гирлянды должны крепиться к опоре не менее чем в двух точках. 2.5.167. Конструкция гирлянд изоляторов расщепленных фаз и крепление их к опоре должны, по возможности, обеспечивать раздельный монтаж и демонтаж каждого из проводов, входящих в расщепленную фазу. 2.5.168. Для крепления проводов и тросов к гирляндам изоляторов на переходных опорах рекомендуется применять глухие поддерживающие зажимы или поддерживающие устройства специальной конструкции (роликовые подвесы). 2.5.169. При выполнении защиты переходов ВЛ 110-750 кВ от грозовых перенапряжений необходимо руководствоваться следующим: 1) все переходы следует защищать от прямых ударов молнии тросами; 2) количество тросов должно быть не менее двух с углом защиты по отношению к крайним проводам не более 20?. При расположении перехода за пределами длины защищаемого подхода ВЛ к РУ и подстанциям с повышенным защитным уровнем в районах по гололеду III и более, а также в районах с частой и интенсивной пляской проводов допускается угол защиты до 30?; 3) рекомендуется установка защитных аппаратов (2.5.119) на переходах с пролетами длиной выше 1000 м или с высотой опор выше 100 м; 4) горизонтальное смещение троса от центра крайней фазы должно быть не менее: 1,5 м –для ВЛ 110 кВ; 2 м – для ВЛ 150 кВ; 2,5 м - для ВЛ 220 кВ; 3,5 м - для ВЛ 330 кВ и 4 м - для ВЛ 500-750 кВ; 5) выбор расстояния между тросами производится согласно 2.5.93 и 2.5.120 п. 4. 2.5.170.
Крепление тросов на всех опорах перехода должно быть выполнено при помощи изоляторов с разрушающей механической нагрузкой не менее 120 кН. С целью уменьшения потерь электроэнергии в изолирующем тросовом креплении должно быть не менее двух изоляторов. Их количество определяется с учетом доступности местности и высоты опор. При использовании тросов для устройства каналов высокочастотной связи или для плавки гололеда количество изоляторов, определенное по условиям обеспечения надежности каналов связи или по условиям обеспечения плавки гололеда, должно быть увеличено на два. Изоляторы, на которых подвешен трос, должны быть шунтированы искровым промежутком, размер которого выбирается в соответствии с 2.5.122 без учета установки дополнительных изоляторов. 2.5.171. Подвеска грозозащитных тросов для защиты переходов ВЛ 35 кВ и ниже не требуется. На переходных опорах должны устанавливаться защитные аппараты. Размер ИП при использовании их в качестве защитных аппаратов рекомендуется принимать в соответствии с гл. 4.2. При увеличении количества изоляторов из-за высоты опоры электрическая прочность ИП должна быть скоординирована с электрической прочностью гирлянд. 2.5.172. Для обеспечения безопасного перемещения обслуживающего персонала по траверсам переходных опор высотой более 50 м с расположением фаз в разных ярусах наименьшее допустимое изоляционное расстояние по воздуху от токоведущих до заземленных частей опор должно быть не менее: 3,3 м - для ВЛ до 110 кВ; 3,8 м -для ВЛ 150 кВ; 4,3 м - для ВЛ 220 кВ; 5,3 м - для ВЛ 330 кВ; 6,3 м -для ВЛ 500 кВ; 7,6 м - для ВЛ 750 кВ. 2.5.173. Сопротивление заземляющих устройств опор должно выбираться в соответствии с табл. 2.5.19 и 2.5.129. Сопротивление заземляющего устройства опор с защитными аппаратами должно быть не более 10 Ом при удельном сопротивлении земли не выше 1000 Ом·м и не более 15 Ом при более высоком удельном сопротивлении. 2.5.174. При проектировании переходов через водные пространства необходимо провести следующие расчеты по гидрологии поймы реки: 1)гидрологический расчет, устанавливающий расчетный уровень воды, уровень ледохода, распределение расхода воды между руслом и поймами и скорости течения воды в руслах и по поймам; 2) русловой расчет, устанавливающий размер отверстия перехода и глубины после размыва у опор перехода; 3) гидравлический расчет, устанавливающий уровень воды перед переходом, струенаправляющими дамбами и насыпями, высоту волн на поймах; 4) расчет нагрузок на фундаменты, находящиеся в русле и пойме реки с учетом воздействия давления льда и навалов судов.
Высота фундаментов опор, находящихся в русле и пойме реки, должна превышать уровень ледохода на 0,5 м. Заглубление фундаментов опор переходов мелкого и глубокого заложения при возможности размыва грунта должно быть не менее 2,5 м (считая от отметки грунта после размыва). Глубина погружения свай в грунт при свайном основании должна быть не менее 4 м от уровня размыва. 2.5.175. Промежуточные и комбинированные опоры (П и ПА) с креплением проводов с помощью поддерживающих гирлянд изоляторов должны рассчитываться в аварийном режиме по первой группе предельных состояний на следующие условия: 1) оборваны одиночный провод или все провода одной фазы одного пролета, тросы не оборваны (одноцепные опоры); 2) оборваны провода двух фаз одного пролета, тросы не оборваны (двухцепные опоры, а также одноцепные со сталеалюминиевыми проводами и проводами из термообработанного алюминиевого сплава со стальным сердечником сечением алюминиевой части для обоих типов проводов до 150 мм2); 3) оборван один трос одного пролета (при расщеплении троса - все его составляющие), провода независимо от марок и сечений не оборваны. В расчетах опор расчетная горизонтальная статическая нагрузка от проводов принимается равной: а) при нерасщепленной фазе и креплении ее в глухом зажиме - редуцированному тяжению, возникающему при обрыве фазы. При этом принимаются сочетания условий согласно 2.5.72 п.3. При расщепленной фазе и креплении ее в глухих зажимах значения для нерасщепленных фаз умножаются на дополнительные коэффициенты: 0,8 - при расщеплении на 2 провода; 0,7 - на три провода; 0,6 - на четыре провода и 0,5 - на пять и более; б) при нерасщепленной и расщепленной фазах провода и креплении их в поддерживающем устройстве специальной конструкции - условной нагрузке, равной 25 кН при одном проводе в фазе; 40 кН при двух проводах в фазе; 60 кН при трех и более проводах в фазе. Расчетная нагрузка от троса, закрепленного в глухом зажиме, принимается равной наибольшему расчетному горизонтальному тяжению троса при сочетании условий, указанных в 2.5.72 п. 3.
При этом для тросов, расщепленных на две составляющие, тяжение следует умножать на 0,8. Расчетная нагрузка от троса, закрепленного в поддерживающем устройстве специальной конструкции, принимается равной 40 кН. Нагрузки прикладываются в местах крепления проводов тех фаз или того троса, при обрыве которых усилия в рассчитываемых элементах получаются наибольшими. 2.5.176. Опоры анкерного типа должны рассчитываться в аварийном режиме по первой группе предельных состояний на обрыв тех фаз или того троса, при обрыве которых усилия в рассматриваемых элементах получаются наибольшими. Расчет производится на следующие условия: 1) оборваны провод или провода одной фазы одного пролета, тросы не оборваны (одноцепные опоры со сталеалюминиевыми проводами и проводами из термообработанного алюминиевого сплава со стальным сердечником сечением алюминиевой части для обоих типов проводов 185 мм2 и более, а также со стальными канатами типа ТК всех сечений, используемыми в качестве проводов); 2) оборваны провода двух фаз одного пролета, тросы не оборваны (двухцепные опоры, а также одноцепные опоры со сталеалюминиевыми проводами и проводами из термообработанного алюминиевого сплава со стальным сердечником сечением алюминиевой части для обоих типов проводов до 150 мм2); 3) оборван один трос одного пролета (при расщеплении троса - все его составляющие), провода независимо от марок и сечений не оборваны. Расчетные нагрузки от проводов и тросов принимаются равными наибольшему расчетному горизонтальному тяжению провода или троса при сочетании условий согласно 2.5.72 пп. 2 и 3. При определении усилий в элементах опоры учитываются условные нагрузки или неуравновешенные тяжения, возникающие при обрывах тех проводов или тросов, при которых эти усилия имеют наибольшие значения. 2.5.177. Опоры большого перехода должны иметь дневную маркировку (окраску) и сигнальное освещение в соответствии с 2.5.292.
Cover
|
||||
|
Допустимые длительные токи для кабелей с бумажной пропитанной изоляцией
1.3.12. Допустимые длительные токи для кабелей напряжением до 35 кВ с изоляцией из пропитанной кабельной бумаги в свинцовой, алюминиевой или поливинилхлоридной оболочке приняты в соответствии с допустимыми температурами жил кабелей:
Номинальное напряжение, кВ | До 3 | 6 | 10 | 20 и 35 |
Допустимая температура жилы кабеля, oС | +80 | +65 | +60 | +50 |
Сечение токопроводящей жилы, мм2 | Ток, А, для кабелей | |||||
одножильных до 1 кВ | двухжильных до 1 кВ | трехжильных напряжением, кВ | четырехжильных до 1 кВ | |||
до 3 | 6 | 10 | ||||
6 | - | 80 | 70 | - | - | - |
10 | 140 | 105 | 95 | 80 | - | 85 |
16 | 175 | 140 | 120 | 105 | 95 | 115 |
25 | 235 | 185 | 160 | 135 | 120 | 150 |
35 | 285 | 225 | 190 | 160 | 150 | 175 |
50 | 360 | 270 | 235 | 200 | 180 | 215 |
70 | 440 | 325 | 285 | 245 | 215 | 265 |
95 | 520 | 380 | 340 | 295 | 265 | 310 |
120 | 595 | 435 | 390 | 340 | 310 | 350 |
150 | 675 | 500 | 435 | 390 | 355 | 395 |
185 | 755 | - | 490 | 440 | 400 | 450 |
240 | 880 | - | 570 | 510 | 460 | - |
300 | 1000 | - | - | - | - | - |
400 | 1220 | - | - | - | - | - |
500 | 1400 | - | - | - | - | - |
625 | 1520 | - | - | - | - | - |
800 | 1700 | - | - | - | - | - |
Сечение токопроводящей жилы, мм2 | Ток, А, для кабелей | |||
трехжильных напряжением, кВ | четырехжильных до 1 кВ | |||
до 3 | 6 | 10 | ||
16 | - | 135 | 120 | - |
25 | 210 | 170 | 150 | 195 |
35 | 250 | 205 | 180 | 230 |
50 | 305 | 255 | 220 | 285 |
70 | 375 | 310 | 275 | 350 |
95 | 440 | 375 | 340 | 410 |
120 | 505 | 430 | 395 | 470 |
150 | 565 | 500 | 450 | - |
185 | 615 | 545 | 510 | - |
240 | 715 | 625 | 585 | - |
Допустимый длительный ток для кабелей с медными жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой оболочке, прокладываемых в воздухе
Сечение токопроводящей жилы, мм2 | Ток, А, для кабелей | |||||
одножильных до 1 кВ | двухжильных до 1 кВ | трехжильных напряжением, кВ | четырехжильных до 1 кВ | |||
до 3 | 6 | 10 | ||||
6 | - | 55 | 45 | - | - | - |
10 | 95 | 75 | 60 | 55 | - | - |
16 | 120 | 95 | 80 | 65 | 60 | 80 |
25 | 160 | 130 | 105 | 90 | 85 | 100 |
35 | 200 | 150 | 125 | 110 | 105 | 120 |
50 | 245 | 185 | 155 | 145 | 135 | 145 |
70 | 305 | 225 | 200 | 175 | 165 | 185 |
95 | 360 | 275 | 245 | 215 | 200 | 215 |
120 | 415 | 320 | 285 | 250 | 240 | 260 |
150 | 470 | 375 | 330 | 290 | 270 | 300 |
185 | 525 | - | 375 | 325 | 305 | 340 |
240 | 610 | - | 430 | 375 | 350 | - |
300 | 720 | - | - | - | - | - |
400 | 880 | - | - | - | - | - |
500 | 1020 | - | - | - | - | - |
625 | 1180 | - | - | - | - | - |
800 | 1400 | - | - | - | - | - |
Сечение токопроводящей жилы, мм2 | Ток, А, для кабелей | |||||
одножильных до 1 кВ | двухжильных до 1 кВ | трехжильных напряжением, кВ | четырехжильных до 1 кВ | |||
до 3 | 6 | 10 | ||||
6 | - | 60 | 55 | - | - | - |
10 | 110 | 80 | 75 | 60 | - | 65 |
16 | 135 | 110 | 90 | 80 | 75 | 90 |
25 | 180 | 140 | 125 | 105 | 90 | 115 |
35 | 220 | 175 | 145 | 125 | 115 | 135 |
50 | 275 | 210 | 180 | 155 | 140 | 165 |
70 | 340 | 250 | 220 | 190 | 165 | 200 |
95 | 400 | 290 | 260 | 225 | 205 | 240 |
120 | 460 | 335 | 300 | 260 | 240 | 270 |
150 | 520 | 385 | 335 | 300 | 275 | 305 |
185 | 580 | - | 380 | 340 | 310 | 345 |
240 | 675 | - | 440 | 390 | 355 | - |
300 | 770 | - | - | - | - | - |
400 | 940 | - | - | - | - | - |
500 | 1080 | - | - | - | - | - |
625 | 1170 | - | - | - | - | - |
800 | 1310 | - | - | - | - | - |
Допустимый длительный ток для кабелей с алюминиевыми жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой оболочке, прокладываемых в воде
Сечение токопроводящей жилы, мм2 | Ток, А, для кабелей трехжильных напряжением, кВ | Четырехжильных до 1 кВ | ||
До 3 | 6 | 10 | ||
16 | - | 105 | 90 | - |
25 | 160 | 130 | 115 | 150 |
35 | 190 | 160 | 140 | 175 |
50 | 235 | 195 | 170 | 220 |
70 | 290 | 240 | 210 | 270 |
95 | 340 | 290 | 260 | 315 |
120 | 390 | 330 | 305 | 360 |
150 | 435 | 385 | 345 | - |
185 | 475 | 420 | 390 | - |
240 | 550 | 480 | 450 | - |
Сечение токопроводящей жилы, мм2 | Ток, А, для кабелей | |||||
одножильных до 1 кВ | двухжильных до 1 кВ | трехжильных напряжением, кВ | четырехжильных до 1 кВ | |||
до 3 | 6 | 10 | ||||
6 | - | 42 | 35 | - | - | - |
10 | 75 | 55 | 46 | 42 | - | 45 |
16 | 90 | 75 | 60 | 50 | 46 | 60 |
25 | 125 | 100 | 80 | 70 | 65 | 75 |
35 | 155 | 115 | 95 | 85 | 80 | 95 |
50 | 190 | 140 | 120 | 110 | 105 | 110 |
70 | 235 | 175 | 155 | 135 | 130 | 140 |
95 | 275 | 210 | 190 | 165 | 155 | 165 |
120 | 320 | 245 | 220 | 190 | 185 | 200 |
150 | 360 | 290 | 255 | 225 | 210 | 230 |
185 | 405 | - | 290 | 250 | 235 | 260 |
240 | 470 | - | 330 | 290 | 270 | - |
300 | 555 | - | - | - | - | - |
400 | 675 | - | - | - | - | - |
500 | 785 | - | - | - | - | - |
625 | 910 | - | - | - | - | - |
800 | 1080 | - | - | - | - | - |
Сечение токопроводящей жилы, мм2 | Ток, А | Сечение токопроводящей жилы, мм2 | Ток, А | ||
в земле | в воздухе | в земле | в воздухе | ||
16 | 90 | 65 | 70 | 220 | 170 |
25 | 120 | 90 | 95 | 265 | 210 |
35 | 145 | 110 | 120 | 310 | 245 |
50 | 180 | 140 | 150 | 355 | 290 |
Допустимый длительный ток для трехжильных кабелей напряжением 6 кВ с алюминиевыми жилами с обндненнопропитанной изоляцией в общей свинцовой оболочке, прокладываемых в земле и воздухе
Сечение токопроводящей жилы, мм2 | Ток, А | Сечение токопроводящей жилы, мм2 | Ток, А | ||
в земле | в воздухе | в земле | в воздухе | ||
16 | 70 | 50 | 70 | 170 | 130 |
25 | 90 | 70 | 95 | 205 | 160 |
35 | 110 | 85 | 120 | 240 | 190 |
50 | 140 | 110 | 150 | 275 | 225 |
Сечение токопроводящей жилы, мм | Ток, А, для трехжильных кабелей напряжением, кВ | |||||
20 | 35 | |||||
при прокладке | ||||||
в земле | в воде | в воздухе | в земле | в воде | в воздухе | |
25 | 110 | 120 | 85 | - | - | - |
35 | 135 | 145 | 100 | - | - | - |
50 | 165 | 180 | 120 | - | - | - |
70 | 200 | 225 | 150 | - | - | - |
95 | 240 | 275 | 180 | - | - | - |
120 | 275 | 315 | 205 | 270 | 290 | 205 |
150 | 315 | 350 | 230 | 310 | - | 230 |
185 | 355 | 390 | 265 | - | - | - |
Сечение токопроводящей жилы, мм | Ток, А, для трехжильных кабелей напряжением, кВ | |||||
20 | 35 | |||||
при прокладке | ||||||
в земле | в воде | в воздухе | в земле | в воде | в воздухе | |
25 | 85 | 90 | 65 | - | - | - |
35 | 105 | 110 | 75 | - | - | - |
50 | 125 | 140 | 90 | - | - | - |
70 | 155 | 175 | 115 | - | - | - |
95 | 185 | 210 | 140 | - | - | - |
120 | 210 | 245 | 160 | 210 | 225 | 160 |
150 | 240 | 270 | 175 | 240 | - | 175 |
185 | 275 | 300 | 205 | - | - | - |
Характеристика земли | Удельное сопротивление см К/Вт | Поправочный коэффициент |
Песок влажностью более 9 %, песчано-глинистая почва влажностью более 1 % | 80 | 1,05 |
Нормальная почва и песок влажностью 7 - 9 %, песчано-глинистая почва влажностью 12 - 14 % | 120 | 1,00 |
Песок влажностью более 4 и менее 7 %, песчано-глинистая почва влажностью 8 - 12 % | 200 | 0,87 |
Песок влажностью до 4 %, каменистая почва | 300 | 0,75 |
Для кабелей, проложенных в воде, допустимые длительные токи приведены в табл. 1.3.14, 1.3.17, 1.3.21, 1.3.22. Они приняты из расчета температуры воды + 15 ? С. 1.3.15. Для кабелей, проложенных в воздухе, внутри и вне зданий, при любом количестве кабелей и температуре воздуха + 25 ? С допустимые длительные токи приведены в табл. 1.3.15, 1.3.18 - 1.3.22, 1.3.24, 1.3.25. 1.3.16. Допустимые длительные токи для одиночных кабелей, прокладываемых в трубах в земле, должны приниматься, как для тех же кабелей, прокладываемых в воздухе, при температуре, равной температуре земли. Таблица 1.3.24. Допустимый длительный ток для одножильных кабелей с медной жилой с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой оболочке, небронированных, прокладываемых в воздухе
Сечение токопроводящей жилы, мм2 | Ток * , А, для кабелей напряжением, кВ | ||
до 3 | 20 | 35 | |
10 | 85/- | - | - |
16 | 120/- | - | - |
25 | 145/- | 105/110 | - |
35 | 170/- | 125/135 | - |
50 | 215/- | 155/165 | - |
70 | 260/- | 185/205 | - |
95 | 305/- | 220/255 | - |
120 | 330/- | 245/290 | 240/265 |
150 | 360/- | 270/330 | 265/300 |
185 | 385/- | 290/360 | 285/335 |
240 | 435/- | 320/395 | 315/380 |
300 | 460/- | 350/425 | 340/420 |
400 | 485/- | 370/450 | - |
500 | 505/- | - | - |
625 | 525/- | - | - |
800 | 550/- | - | - |
Прокладка нескольких кабелей в земле с расстояниями между ними менее 10 мм в свету не рекомендуется. 1.3.19. Для масло- и газонаполненных одножильных бронированных кабелей, а также других кабелей новых конструкций допустимые длительные токи устанавливаются заводами-изготовителями. Таблица 1.3.25. Допустимый длительный ток для одножильных кабелей с алюминиевой жилой с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой или алюминиевой оболочке, небронированных, прокладываемых в воздухе
Сечение токопроводящей жилы, мм2 | Ток * , А, для кабелей напряжением, кВ | ||
до 3 | 20 | 35 | |
10 | 65/- | - | - |
16 | 90/- | - | - |
25 | 110/- | 80/85 | - |
35 | 130/- | 95/105 | - |
50 | 165/- | 120/130 | - |
70 | 200/- | 140/160 | - |
95 | 235/- | 170/195 | - |
120 | 255/- | 190/225 | 185/205 |
150 | 275/- | 210/255 | 205/230 |
185 | 295/- | 225/275 | 220/255 |
240 | 335/- | 245/305 | 245/290 |
300 | 355/- | 270/330 | 260/330 |
400 | 375/- | 285/350 | - |
500 | 390/- | - | - |
625 | 405/- | - | - |
800 | 425/- | - | - |
Расстояние между кабелями в свету, мм2 | Коэффициент при количестве кабелей | |||||
1 | 2 | 3 | 4 | 5 | 6 | |
100 | 1,00 | 0,90 | 0,85 | 0,80 | 0,78 | 0,75 |
200 | 1,00 | 0,92 | 0,87 | 0,84 | 0,82 | 0,81 |
300 | 1,00 | 0,93 | 0,90 | 0,87 | 0,86 | 0,85 |
Номинальное напряжение кабеля, кВ | До 3 | 6 | 10 |
Коэффициент b | 1,09 | 1,05 | 1,0 |
Среднесуточная загрузка sср.сут/sном | 1 | 0,85 | 0,7 |
Коэффициент c | 1 | 1,07 | 1,16 |
Таблица 1.3.27. Допустимый длительный ток для кабелей 10 кВ с медными или алюминиевыми жилами сечением 95 мм2, прокладываемых в блоках
Гр. | Конфигурация блоков | № канала | Ток I0, А для кабелей | ||
медных | алюминиевых | ||||
I | 1 | 191 | 147 | ||
II | 2 | 173 | 133 | ||
3 | 167 | 129 | |||
III | 2 | 154 | 119 | ||
IV | 2 | 147 | 113 | ||
3 | 138 | 106 | |||
V | 2 | 143 | 110 | ||
3 | 135 | 102 | |||
4 | 131 | 91 | |||
VI | 2 | 140 | 103 | ||
3 | 132 | 104 | |||
4 | 118 | 101 | |||
VII | 2 | 136 | 105 | ||
3 | 132 | 102 | |||
4 | 119 | 92 | |||
VIII | 2 | 135 | 104 | ||
3 | 124 | 96 | |||
4 | 104 | 80 | |||
IX | 2 | 135 | 104 | ||
3 | 118 | 91 | |||
4 | 100 | 77 | |||
X | 2 | 133 | 102 | ||
3 | 116 | 90 | |||
4 | 81 | 62 | |||
XI | 2 | 129 | 99 | ||
3 | 114 | 88 | |||
4 | 79 | 55 |
Сечение токопроводящей жилы, мм2 | Коэффициент для номера канала в блоке | |||
1 | 2 | 3 | 4 | |
25 | 0,44 | 0,46 | 0,47 | 0,51 |
35 | 0,54 | 0,57 | 0,57 | 0,60 |
50 | 0,67 | 0,69 | 0,69 | 0,71 |
70 | 0,81 | 0,84 | 0,84 | 0,85 |
95 | 1,00 | 1,00 | 1,00 | 1,00 |
120 | 1,14 | 1,13 | 1,13 | 1,12 |
150 | 1,31 | 1,30 | 1,29 | 1,26 |
185 | 1,50 | 1,46 | 1,45 | 1,38 |
240 | 1,78 | 1,70 | 1,68 | 1,55 |
Расстояние между блоками, мм | 500 | 1000 | 1500 | 2000 | 2500 | 3000 |
Коэффициент | 0,85 | 0,89 | 0,91 | 0,93 | 0,95 | 0,96 |
Допустимые длительные токи для неизолированных проводов и шин
1.3.22. Допустимые длительные токи для неизолированных проводов и окрашенных шин приведены в табл. 1.3.29 - 1.3.35. Они приняты из расчета допустимой температуры их нагрева + 70 ? С при температуре воздуха +25 ? С. Для полых алюминиевых проводов марок ПА500 и ПА600 допустимый длительный ток следует принимать:
Марка провода | ПА500 | ПА6000 |
Ток, А | 1340 | 1680 |
Номинальное сечение, мм2 | Сечение (алюминий/сталь), мм2 | Ток, А, для проводов марок | |||||
АС, АСКС, АСК, АСКП | М | А и АКП | М | А и АКП | |||
вне помещений | внутри помещений | вне помещений | внутри помещений | ||||
10 | 10/1,8 | 84 | 53 | 95 | - | 60 | - |
16 | 16/2,7 | 111 | 79 | 133 | 105 | 102 | 75 |
25 | 25/4,2 | 142 | 109 | 183 | 136 | 137 | 106 |
35 | 35/6,2 | 175 | 135 | 223 | 170 | 173 | 130 |
50 | 50/8 | 210 | 165 | 275 | 215 | 219 | 165 |
70 | 70/11 | 265 | 210 | 337 | 265 | 268 | 210 |
95 | 95/16 | 330 | 260 | 422 | 320 | 341 | 255 |
120 | 120/19 | 390 | 313 | 485 | 375 | 395 | 300 |
120/27 | 375 | - | |||||
150/19 | 450 | 365 | 570 | 440 | 465 | 355 | |
150 | 150/24 | 450 | 365 | ||||
150/34 | 450 | - | |||||
185/24 | 520 | 430 | 650 | 500 | 540 | 410 | |
185 | 185/29 | 510 | 425 | ||||
185/43 | 515 | - | |||||
240/32 | 605 | 505 | 760 | 590 | 685 | 490 | |
240 | 240/39 | 610 | 505 | ||||
240/56 | 610 | - | |||||
300/39 | 710 | 600 | 880 | 680 | 740 | 570 | |
300 | 300/48 | 690 | 585 | ||||
300/66 | 680 | - | |||||
330 | 330/27 | 730 | - | - | - | - | - |
400/22 | 830 | 713 | 1050 | 815 | 895 | 690 | |
400 | 400/51 | 825 | 705 | ||||
400/64 | 860 | - | - | ||||
500 | 500/27 | 960 | 830 | - | 980 | - | 820 |
500/64 | 945 | 815 | |||||
600 | 600/72 | 1050 | 920 | - | 1100 | - | 955 |
700 | 700/86 | 1180 | 1040 | - | - | - | - |
Допустимый длительный ток для шин круглого и трубчатого сечений
Диаметр, мм | Круглые шины | Медные трубы | Алюминиевые трубы | Стальные трубы | |||||||
Ток * , А | Внутренний и наружный диаметры, мм | Ток, А | Внутренний и наружный диаметры, мм | Ток, А | Условный проход, мм | Толщина стенки, мм | Наружный диаметр, мм | Переменный ток, А | |||
медные | алюминиевые | без разреза | с продольным разрезом | ||||||||
6 | 155/155 | 120/120 | 12/15 | 340 | 13/16 | 295 | 8 | 2,8 | 13,5 | 75 | - |
7 | 195/195 | 150/150 | 14/18 | 460 | 17/20 | 345 | 10 | 2,8 | 17,0 | 90 | - |
8 | 235/235 | 180/180 | 16/20 | 505 | 18/22 | 425 | 15 | 3,2 | 21,3 | 118 | - |
10 | 320/320 | 245/245 | 18/22 | 555 | 27/30 | 500 | 20 | 3,2 | 26,8 | 145 | - |
12 | 415/415 | 320/320 | 20/24 | 600 | 26/30 | 575 | 25 | 4,0 | 33,5 | 180 | - |
14 | 505/505 | 390/390 | 22/26 | 650 | 25/30 | 640 | 32 | 4,0 | 42,3 | 220 | - |
15 | 565/565 | 435/435 | 25/30 | 830 | 36/40 | 765 | 40 | 4,0 | 48,0 | 255 | - |
16 | 610/615 | 475/475 | 29/34 | 925 | 35/40 | 850 | 50 | 4,5 | 60,0 | 320 | - |
18 | 720/725 | 560/560 | 35/40 | 1100 | 40/45 | 935 | 65 | 4,5 | 75,5 | 390 | - |
19 | 780/785 | 605/610 | 40/45 | 1200 | 45/50 | 1040 | 80 | 4,5 | 88,5 | 455 | - |
20 | 835/840 | 650/655 | 45/50 | 1330 | 50/55 | 1150 | 100 | 5,0 | 114 | 670 | 770 |
21 | 900/905 | 695/700 | 49/55 | 1580 | 54/60 | 1340 | 125 | 5,5 | 140 | 800 | 890 |
22 | 955/965 | 740/745 | 53/60 | 1860 | 64/70 | 1545 | 150 | 5,5 | 165 | 900 | 1000 |
25 | 1140/1165 | 885/900 | 62/70 | 2295 | 74/80 | 1770 | - | - | - | - | - |
27 | 1270/1290 | 980/1000 | 72/80 | 2610 | 72/80 | 2035 | - | - | - | - | - |
28 | 1325/1360 | 1025/1050 | 75/85 | 3070 | 75/85 | 2400 | - | - | - | - | - |
30 | 1450/1490 | 1120/1155 | 90/95 | 2460 | 90/95 | 1925 | - | - | - | - | - |
35 | 1770/1865 | 1370/1450 | 95/100 | 3060 | 90/100 | 2840 | - | - | - | - | - |
38 | 1960/2100 | 1510/1620 | - | - | - | - | - | - | - | - | - |
40 | 2080/2260 | 1610/1750 | - | - | - | - | - | - | - | - | - |
42 | 2200/2430 | 1700/1870 | - | - | - | - | - | - | - | - | - |
45 | 2380/2670 | 1850/2060 | - | - | - | - | - | - | - | - | - |
Таблица 1.3.31. Допустимый длительный ток для шин прямоугольного сечения
Размеры,мм | Медные шины | Алюминиевые шины | Стальные шины | |||||||
Ток * , А, при количестве полос на полюс или фазу | Размеры, мм | Ток * , А | ||||||||
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | |||
15 х 3 | 210 | - | - | - | 165 | - | - | - | 16 х 2,5 | 55/70 |
20 х 3 | 275 | - | - | - | 215 | - | - | - | 20 х 2,5 | 60/90 |
25 х 1 | 340 | - | - | - | 265 | - | - | - | 25 х 2,5 | 75/110 |
30 х 4 | 475 | - | - | - | 365/370 | - | - | - | 20 х 3 | 65/100 |
40 х 4 | 625 | - /1090 | - | - | 480 | - /855 | - | - | 25 х 3 | 80/120 |
40 х 5 | 700/705 | - /1250 | - | - | 540/545 | - /965 | - | - | 30 х 3 | 95/140 |
50 х 5 | 860/870 | - /1525 | - /1895 | - | 665/670 | - /1180 | - /1470 | - | 40 х 3 | 125/190 |
50 х 6 | 955/960 | - /1700 | - /2145 | - | 740/745 | - /1315 | - /1655 | - | 50 х 3 | 155/230 |
60 х 6 | 1125/1145 | 1740/1990 | 2240/2495 | - | 870/880 | 1350/1555 | 1720/1940 | - | 60 х 3 | 185/280 |
80 х 6 | 1480/1510 | 2110/2630 | 2720/3220 | - | 1150/1170 | 1630/2055 | 2100/2460 | - | 70 х 3 | 215/320 |
100 х 6 | 1810/1875 | 2470/3245 | 3170/3940 | - | 1425/1455 | 1935/2515 | 2500/3040 | - | 75 х 3 | 230/345 |
60 х 8 | 1320/1345 | 2160/2485 | 2790/3020 | - | 1025/1040 | 1680/1840 | 2180/2330 | - | 80 х 3 | 245/365 |
80 х 8 | 1690/1755 | 2620/3095 | 3370/3850 | - | 1320/1355 | 2040/2400 | 2620/2975 | - | 90 х 3 | 275/410 |
100 х 8 | 2080/2180 | 3060/3810 | 3930/4690 | - | 1625/1690 | 2390/2945 | 3050/3620 | - | 100 х 3 | 305/460 |
120 х 8 | 2400/2600 | 3400/4400 | 4340/5600 | - | 1900/2040 | 2650/3350 | 3380/4250 | - | 20 x4 | 70/115 |
60 х 10 | 1475/1525 | 2560/2725 | 3300/3530 | - | 1155/1180 | 2010/2110 | 2650/2720 | - | 22 x4 | 75/125 |
80 х 10 | 1900/1990 | 3100/3510 | 3990/4450 | - | 1480/1540 | 2410/2735 | 3100/3440 | - | 25 x4 | 85/140 |
100 х 10 | 2310/2470 | 3610/4325 | 4650/5385 | 5300/6060 | 1820/1910 | 2860/3350 | 3650/4160 | 4150/4400 | 30х4 | 100/165 |
120 х 10 | 2650/2950 | 4100/5000 | 5200/6250 | 5900/6800 | 2070/2300 | 3200/3900 | 4100/4860 | 4650/5200 | 40 х 4 | 130/220 |
50 x4 | 165/270 | |||||||||
60х4 | 195/325 | |||||||||
70х4 | 225/375 | |||||||||
80х4 | 260/430 | |||||||||
90х4 | 290/480 | |||||||||
100 x4 | 325/535 |
Таблица 1.3.32. Допустимый длительный ток для неизолированных бронзовых и сталебронзовых проводов
Провод | Марка провода | Ток * , А |
Бронзовый | Б-50 | 215 |
Б-70 | 265 | |
Б-95 | 330 | |
Б-120 | 380 | |
Б-150 | 410 | |
Б-185 | 500 | |
Б-240 | 600 | |
Б-300 | 700 | |
Сталебронзовый | БС-185 | 515 |
БС-240 | 640 | |
БС-300 | 750 | |
БС-400 | 890 | |
БС-500 | 980 |
Марка провода | Ток, А | Марка провода | Ток, А |
ПСО-3 | 23 | ПС-25 | 60 |
ПСО-3,5 | 26 | ПС-35 | 75 |
ПСО-4 | 30 | ПС-50 | 90 |
ПСО-5 | 35 | ПС-70 | 125 |
ПС-95 | 135 |
Размеры, мм | Поперечное сечение | Ток А, на пакет шин | ||||
h | b | h1 | H | четырех- полосной шины, мм2 | медных | алюминиевых |
80 | 8 | 140 | 157 | 2560 | 5750 | 4550 |
80 | 10 | 144 | 160 | 3200 | 6400 | 5100 |
100 | 8 | 160 | 185 | 3200 | 7000 | 5550 |
100 | 10 | 164 | 188 | 4000 | 7700 | 6200 |
120 | 10 | 184 | 216 | 4800 | 9050 | 7300 |
Размеры, мм | Поперечное сечение одной шины, мм2 | Ток, А, на две шины | ||||
а | b | c | r | медные | алюминиевые | |
75 | 35 | 4 | 6 | 520 | 2730 | - |
75 | 35 | 5,5 | 6 | 695 | 3250 | 2670 |
100 | 45 | 4,5 | 8 | 775 | 3620 | 2820 |
100 | 45 | 6 | 8 | 1010 | 4300 | 3500 |
125 | 55 | 6,5 | 10 | 1370 | 5500 | 4640 |
150 | 65 | 7 | 10 | 1785 | 7000 | 5650 |
175 | 80 | 8 | 12 | 2440 | 8550 | 6430 |
200 | 90 | 10 | 14 | 3435 | 9900 | 7550 |
200 | 90 | 12 | 16 | 4040 | 10 500 | 8830 |
225 | 105 | 12,5 | 16 | 4880 | 12 500 | 10 300 |
250 | 115 | 12,5 | 16 | 5450 | - | 10 800 |
Допустимые длительные токи для проводов, шнуров и кабелей с резиновой или пластмассовой изоляцией
1.3.10. Допустимые длительные токи для проводов с резиновой или поливинилхлоридной изоляцией, шнуров с резиновой изоляцией и кабелей с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках приведены в табл. 1.3.4 - 1.3.11. Они приняты для температур: жил +65, окружающего воздуха +25 и земли +15 ? С. При определении количества проводов, прокладываемых в одной трубе (или жил многожильного проводника), нулевой рабочий проводник четырехпроводной системы трехфазного тока, а также заземляющие и нулевые защитные проводники в расчет не принимаются. Данные, содержащиеся в табл. 1.3.4 и 1.3.5, следует применять независимо от количества труб и места их прокладки (в воздухе, перекрытиях, фундаментах). Допустимые длительные токи для проводов и кабелей, проложенных в коробах, а также в лотках пучками, должны приниматься: для проводов - по табл. 1.3.4 и 1.3.5, как для проводов, проложенных в трубах, для кабелей - по табл. 1.3.6 - 1.3.8, как для кабелей, проложенных в воздухе. При количестве одновременно нагруженных проводов более четырех, проложенных в трубах, коробах, а также в лотках пучками, токи для проводов должны приниматься по табл. 1.3.4 и 1.3.5, как для проводов, проложенных открыто (в воздухе), с введением снижающих коэффициентов 0, 68 для 5 и 6; 0, 63 для 7 - 9 и 0, 6 для 10 - 12 проводов. Для проводов вторичных цепей снижающие коэффициенты не вводятся. 1.3.11. Допустимые длительные токи для проводов, проложенных в лотках, при однорядной прокладке (не в пучках) следует принимать как для проводов, проложенных в воздухе. Допустимые длительные токи для проводов и кабелей, прокладываемых в коробах, следует принимать по табл. 1.3.4 - 1.3.7, как для одиночных проводов и кабелей, проложенных открыто (в воздухе), с применением снижающих коэффициентов, указанных в табл. 1.3.12. При выборе снижающих коэффициентов контрольные и резервные провода и кабели не учитываются. Таблица 1.3.4. Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами
Сечение токопроводящей жилы, мм2 | Ток, А, для проводов, проложенных | |||||
открыто | в одной трубе | |||||
двух одно жильных | трех одно жильных | четырех одно жильных | одного двух жильного | одного трех жильного | ||
0,5 | 11 | - | - | - | - | - |
0,75 | 15 | - | - | - | - | - |
1 | 17 | 16 | 15 | 14 | 15 | 14 |
1,2 | 20 | 18 | 16 | 15 | 16 | 14,5 |
1,5 | 23 | 19 | 17 | 16 | 18 | 15 |
2 | 26 | 24 | 22 | 20 | 23 | 19 |
2,5 | 30 | 27 | 25 | 25 | 25 | 21 |
3 | 34 | 32 | 28 | 26 | 28 | 24 |
4 | 41 | 38 | 35 | 30 | 32 | 27 |
5 | 46 | 42 | 39 | 34 | 37 | 31 |
6 | 50 | 46 | 42 | 40 | 40 | 34 |
8 | 62 | 54 | 51 | 46 | 48 | 43 |
10 | 80 | 70 | 60 | 50 | 55 | 50 |
16 | 100 | 85 | 80 | 75 | 80 | 70 |
25 | 140 | 115 | 100 | 90 | 100 | 85 |
35 | 170 | 135 | 125 | 115 | 125 | 100 |
50 | 215 | 185 | 170 | 150 | 160 | 135 |
70 | 270 | 225 | 210 | 185 | 195 | 175 |
95 | 330 | 275 | 255 | 225 | 245 | 215 |
120 | 385 | 315 | 290 | 260 | 295 | 250 |
150 | 440 | 360 | 330 | - | - | - |
185 | 510 | - | - | - | - | - |
240 | 605 | - | - | - | - | - |
300 | 695 | - | - | - | - | - |
400 | 830 | - | - | - | - | - |
Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами
Сечение токопроводящей жилы, мм2 | Ток, А, для проводов, проложенных | |||||
открыто | в одной трубе | |||||
двух одножильных | трех одножильных | четырех одножильных | одного двухжильного | одного трехжильного | ||
2 | 21 | 19 | 18 | 15 | 17 | 14 |
2,5 | 24 | 20 | 19 | 19 | 19 | 16 |
3 | 27 | 24 | 22 | 21 | 22 | 18 |
4 | 32 | 28 | 28 | 23 | 25 | 21 |
5 | 36 | 32 | 30 | 27 | 28 | 24 |
6 | 39 | 36 | 32 | 30 | 31 | 26 |
8 | 46 | 43 | 40 | 37 | 38 | 32 |
10 | 60 | 50 | 47 | 39 | 42 | 38 |
16 | 75 | 60 | 60 | 55 | 60 | 55 |
25 | 105 | 85 | 80 | 70 | 75 | 65 |
35 | 130 | 100 | 95 | 85 | 95 | 75 |
50 | 165 | 140 | 130 | 120 | 125 | 105 |
70 | 210 | 175 | 165 | 140 | 150 | 135 |
95 | 255 | 215 | 200 | 175 | 190 | 165 |
120 | 295 | 245 | 220 | 200 | 230 | 190 |
150 | 340 | 275 | 255 | - | - | - |
185 | 390 | - | - | - | - | - |
240 | 465 | - | - | - | - | - |
300 | 535 | - | - | - | - | - |
400 | 645 | - | - | - | - | - |
Сечение токопроводящей жилы, мм2 | Ток * , А, для проводов и кабелей | ||||
одножильных | двухжильных | трехжильных | |||
при прокладке | |||||
в воздухе | в воздухе | в земле | в воздухе | в земле | |
1,5 | 23 | 19 | 33 | 19 | 27 |
2,5 | 30 | 27 | 44 | 25 | 38 |
4 | 41 | 38 | 55 | 35 | 49 |
6 | 50 | 50 | 70 | 42 | 60 |
10 | 80 | 70 | 105 | 55 | 90 |
16 | 100 | 90 | 135 | 75 | 115 |
25 | 140 | 115 | 175 | 95 | 150 |
35 | 170 | 140 | 210 | 120 | 180 |
50 | 215 | 175 | 265 | 145 | 225 |
70 | 270 | 215 | 320 | 180 | 275 |
95 | 325 | 260 | 385 | 220 | 330 |
120 | 385 | 300 | 445 | 260 | 385 |
150 | 440 | 350 | 505 | 305 | 435 |
185 | 510 | 405 | 570 | 350 | 500 |
240 | 605 | - | - | - | - |
Таблица 1.3.7. Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных *
Сечение токопроводящей жилы, мм2 | Ток, А, для проводов и кабелей | ||||
одножильных | двухжильных | трехжильных | |||
при прокладке | |||||
в воздухе | в воздухе | в земле | в воздухе | в земле | |
2,5 | 23 | 21 | 34 | 19 | 29 |
4 | 31 | 29 | 42 | 27 | 38 |
6 | 38 | 38 | 55 | 32 | 46 |
10 | 60 | 55 | 80 | 42 | 70 |
16 | 75 | 70 | 105 | 60 | 90 |
25 | 105 | 90 | 135 | 75 | 115 |
35 | 130 | 105 | 160 | 90 | 140 |
50 | 165 | 135 | 205 | 110 | 175 |
70 | 210 | 165 | 245 | 140 | 210 |
95 | 250 | 200 | 295 | 170 | 255 |
120 | 295 | 230 | 340 | 200 | 295 |
150 | 340 | 270 | 390 | 235 | 335 |
185 | 390 | 310 | 440 | 270 | 385 |
240 | 465 | - | - | - | - |
Сечение токопроводящей жилы, мм2 | Ток * , А, для шнуров, проводов и кабелей | ||
одножильных | двухжильных | трехжильных | |
0,5 | - | 12 | - |
0,75 | - | 16 | 14 |
1,0 | - | 18 | 16 |
1,5 | - | 23 | 20 |
2,5 | 40 | 33 | 28 |
4 | 50 | 43 | 36 |
6 | 65 | 55 | 45 |
10 | 90 | 75 | 60 |
16 | 120 | 95 | 80 |
25 | 160 | 125 | 105 |
35 | 190 | 150 | 130 |
50 | 235 | 185 | 160 |
70 | 290 | 235 | 200 |
Сечение токопроводящей жилы, мм2 | Ток * , А, для кабелей напряжением, кВ | ||
0,5 | 3 | 6 | |
6 | 44 | 45 | 47 |
10 | 60 | 60 | 65 |
16 | 80 | 80 | 85 |
25 | 100 | 105 | 105 |
35 | 125 | 125 | 130 |
50 | 155 | 155 | 160 |
70 | 190 | 195 | - |
Таблица 1.3.10. Допустимый длительный ток для шланговых с медными жилами с резиновой изоляцией кабелей для передвижных электроприемников
Сечение токопроводящей жилы, мм2 | Ток * , А, для кабелей напряжением, кВ | Сечение токопроводящей жилы, мм2 | Ток*, А, для кабелей напряжением, кВ | ||
3 | 6 | 3 | 6 | ||
16 | 85 | 90 | 70 | 215 | 220 |
25 | 115 | 120 | 95 | 260 | 265 |
35 | 140 | 145 | 120 | 305 | 310 |
50 | 175 | 180 | 150 | 345 | 350 |
Сечение токопроводящей жилы, мм2 | Ток, А | Сечение токопроводящей жилы, мм2 | Ток, А | Сечение токопроводящей жилы, мм2 | Ток, А |
1 | 20 | 16 | 115 | 120 | 390 |
1,5 | 25 | 25 | 150 | 150 | 445 |
2,5 | 40 | 35 | 185 | 185 | 505 |
4 | 50 | 50 | 230 | 240 | 590 |
6 | 65 | 70 | 285 | 300 | 670 |
10 | 90 | 95 | 340 | 350 | 745 |
Способ прокладки | Количество проложенных проводов и кабелей | Снижающий коэффициент для проводов и кабелей, питающих | ||
одножильных | многожильных | отдельные электроприемники с коэффициентом использования до 0, 7 | группы электроприемников и отдельные приемники с коэффициентом использования более 0, 7 | |
Многослойно и пучками | - | До 4 | 1,0 | - |
2 | 5-6 | 0,85 | - | |
3-9 | 7-9 | 0,75 | - | |
10-11 | 10-11 | 0,7 | - | |
12-14 | 12-14 | 0,65 | - | |
15-18 | 15-18 | 0,6 | - | |
Однослойно | 2-4 | 2-4 | - | 0,67 |
5 | 5 | - | 0,6 |
Габариты, пересечения и сближения
2.4.55. Расстояние по вертикали от проводов ВЛИ до поверхности земли в населенной и ненаселенной местности до земли и проезжей части улиц должно быть не менее 5 м. Оно может быть уменьшено в труднодоступной местности до 2,5 м и в недоступной (склоны гор, скалы, утесы) - до 1 м. При пересечении непроезжей части улиц ответвлениями от ВЛИ к вводам в здания расстояния от СИП до тротуаров пешеходных дорожек допускается уменьшить до 3,5 м. Расстояние от СИП и изолированных проводов до поверхности земли на ответвлениях к вводу должно быть не менее 2,5 м. Расстояние от неизолированных проводов до поверхности земли на ответвлениях к вводам должно быть не менее 2,75 м. 2.4.56. Расстояние от проводов ВЛ в населенной и ненаселенной местности при наибольшей стреле провеса проводов до земли и проезжей части улиц должно быть не менее 6 м. Расстояние от проводов до земли может быть уменьшено в труднодоступной местности до 3,5 м и в недоступной местности (склоны гор, скалы, утесы) - до 1 м. 2.4.57. Расстояние по горизонтали от СИП при наибольшем их отклонении до элементов зданий и сооружений должно быть не менее: 1,0 м - до балконов, террас и окон; 0,2 м - до глухих стен зданий, сооружений. Допускается прохождение ВЛИ и ВЛ с изолированными проводами над крышами зданий и сооружениями (кроме оговоренных в гл.7.3 и 7.4), при этом расстояние от них до проводов по вертикали должно быть не менее 2,5 м. 2.4.58. Расстояние по горизонтали от проводов ВЛ при наибольшем их отклонении до зданий и сооружений должно быть не менее: 1,5 м - до балконов, террас и окон; 1,0 м - до глухих стен. Прохождение ВЛ с неизолированными проводами над зданиями и сооружениями не допускается. 2.4.59. Наименьшее расстояние от СИП и проводов ВЛ до поверхности земли или воды, а также до различных сооружений при прохождении ВЛ над ними определяется при высшей температуре воздуха без учета нагрева проводов ВЛ электрическим током. 2.4.60. При прокладке по стенам зданий и сооружениям минимальное расстояние от СИП должно быть: при горизонтальной прокладке над окном, входной дверью - 0,3 м; под балконом, окном, карнизом - 0,5 м; до земли - 2,5 м; при вертикальной прокладке до окна - 0,5 м; до балкона, входной двери - 1,0 м.
Расстояние в свету между СИП и стеной здания или сооружением должно быть не менее 0,06 м. 2.4.61. Расстояния по горизонтали от подземных частей опор или заземлителей опор до подземных кабелей, трубопроводов и наземных колонок различного назначения должны быть не менее приведенных в табл.2.4.4. Таблица 2.4.4 Наименьшее допустимое расстояние по горизонтали от подземных частей опор или заземляющих устройств опор до подземных кабелей, трубопроводов и наземных колонок
Объект сближения | Расстояние, м |
Водо-, паро- и теплопроводы, распределительные газопроводы, канализационные трубы | 1 |
Пожарные гидранты, колодцы, люки канализации, водоразборные колонки | 2 |
Кабели (кроме кабелей связи, сигнализации и проводного вещания, см. также 2.4.77) | 1 |
То же, но при прокладке их в изолирующей трубе | 0,5 |
При параллельном прохождении и сближении ВЛ до 1 кВ и ВЛ выше 1 кВ расстояние между ними по горизонтали должно быть не менее указанных в 2.5.230. 2.4.68. Совместная подвеска проводов ВЛ до 1 кВ и неизолированных проводов ВЛ до 20 кВ на общих опорах допускается при соблюдении следующих условий: 1) ВЛ до 1 кВ должны выполняться по расчетным климатическим условиям ВЛ до 20 кВ; 2) провода ВЛ до 20 кВ должны располагаться выше проводов ВЛ до 1 кВ; 3) провода ВЛ до 20 кВ, закрепляемые на штыревых изоляторах, должны иметь двойное крепление. 2.4.69. При подвеске на общих опорах проводов ВЛ до 1 кВ и защищенных проводов ВЛЗ 6-20 кВ должны соблюдаться следующие требования: 1) ВЛ до 1 кВ должны выполняться по расчетным климатическим условиям ВЛ до 20 кВ; 2) провода ВЛЗ 6-20 кВ должны располагаться, как правило, выше проводов ВЛ до 1 кВ; 3) крепление проводов ВЛЗ 6-20 кВ на штыревых изоляторах должно выполняться усиленным. 2.4.70. При пересечении ВЛ (ВЛИ) с ВЛ напряжением выше 1 кВ расстояние от проводов пересекающей ВЛ до пересекаемой ВЛ (ВЛИ) должно соответствовать требованиям, приведенным в 2.5.221 и 2.5.227. Сечение проводов пересекаемой ВЛ должно приниматься в соответствии с 2.5.223.
Генераторы и синхронные компенсаторы
Область применения Общие требования Охлаждение и смазка Системы возбуждения Размещение и установка генераторов и синхронных компенсаторов
Гибкие токопроводы напряжением выше кВ
2.2.33. Гибкие токопроводы на открытом воздухе должны прокладываться на самостоятельных опорах. Совмещенная прокладка токопроводов и технологических трубопроводов на общих опорах не допускается. 2.2.34. Расстояние между проводами расщепленной фазы рекомендуется принимать равным не менее чем шести диаметрам применяемых проводов. 2.2.35. Расстояние между токоведущими частями и от них до заземленных конструкций, зданий и других сооружений, а также до полотна автомобильной или железной дороги должно приниматься по гл. 2.5. 2.2.36. Сближение токопроводов со зданиями и сооружениями, содержащими взрывоопасные помещения, а также со взрывоопасными наружными установками должно выполняться в соответствии с требованиями гл. 7.3. 2.2.37. Проверку расстояний от токопроводов до пересекаемых сооружений следует производить с учетом дополнительных весовых нагрузок на провода от междуфазных и внутрифазных распорок и возможностей максимальной температуры провода в послеаварийном режиме. Максимальная температура при работе токопророда в послеаварийном режиме принимается равной плюс 70?С. 2.2.38. Располагать фазы цепи протяженного токопровода рекомендуется по вершинам равностороннего треугольника. 2.2.39. Конструкция протяжного токопровода должна предусматривать возможность применения переносных заземлений, позволяющих безопасно выполнять работы на отключенной цепи. Число мест установки переносных заземлений выбирается по 2.2.30, п. 3. 2.2.40. При расчете проводов гибких токопроводов необходимо руководствоваться следующим: 1. Тяжение и напряжение в проводах при различных сочетаниях внешних нагрузок должны приниматься в зависимости от допустимого нормативного тяжения на фазу, обусловленного прочностью применяемых опор и узлов, воспринимающих усилия. Нормативное тяжение на фазу следует принимать, как правило, не более 9,8 кН (10 тс). 2. Должны учитываться дополнительные весовые нагрузки на провода от междуфазных и внутрифазных распорок. 3. Давление ветра на провода должно рассчитываться по 2.5.30.
Главная заземляющая шина
1.7.119. Главная заземляющая шина может быть выполнена внутри вводного устройства электроустановки напряжением до 1 кВ или отдельно от него. Внутри вводного устройства в качестве главной заземляющей шины следует использовать шину РЕ. При отдельной установке главная заземляющая шина должна быть расположена в доступном, удобном для обслуживания месте вблизи вводного устройства. Сечение отдельно установленной главной заземляющей шины должно быть не менее сечения РЕ (PEN)-проводника питающей линии. Главная заземляющая шина должна быть, как правило, медной. Допускается применение главной заземляющей шины из стали. Применение алюминиевых шин не допускается. В конструкции шины должна быть предусмотрена возможность индивидуального отсоединения присоединенных к ней проводников. Отсоединение должно быть возможно только с использованием инструмента. В местах, доступных только квалифицированному персоналу (например, щитовых помещениях жилых домов), главную заземляющую шину следует устанавливать открыто. В местах, доступных посторонним лицам (например, подъездах или подвалах домов), она должна иметь защитную оболочку - шкаф или ящик с запирающейся на ключ дверцей. На дверце или на стене над шиной должен быть нанесен знак . 1.7.120. Если здание имеет несколько обособленных вводов, главная заземляющая шина должна быть выполнена для каждого вводного устройства. При наличии встроенных трансформаторных подстанций главная заземляющая шина должна устанавливаться возле каждой из них. Эти шины должны соединяться проводником уравнивания потенциалов, сечение которого должно быть не менее половины сечения РЕ (PEN)-проводника той линии среди отходящих от щитов низкого напряжения подстанций, которая имеет наибольшее сечение. Для соединения нескольких главных заземляющих шин могут использоваться сторонние проводящие части, если они соответствуют требованиям 1.7.122 к непрерывности и проводимости электрической цепи.
Групповая сеть
6.2.9. Линии групповой сети внутреннего освещения должны быть защищены предохранителями или автоматическими выключателями. 6.2.10. Каждая групповая линия, как правило, должна содержать на фазу не более 20 ламп накаливания, ДРЛ, ДРИ, ДРИЗ, ДНаТ, в это число включаются также штепсельные розетки. В производственных, общественных и жилых зданиях на однофазные группы освещения лестниц, этажных коридоров, холлов, технических подполий и чердаков допускается присоединять до 60 ламп накаливания каждая мощностью до 60 Вт. Для групповых линий, питающих световые карнизы, световые потолки и т.п. с лампами накаливания, а также светильники с люминесцентными лампами мощностью до 80 Вт, рекомендуется присоединять до 60 ламп на фазу; для линий, питающих светильники с люминесцентными лампами мощностью до 40 Вт включительно, может присоединяться до 75 ламп на фазу и мощностью до 20 Вт включительно - до 100 ламп на фазу. Для групповых линий, питающих многоламповые люстры, число ламп любого типа на фазу не ограничивается. В групповых линиях, питающих лампы мощностью 10 кВт и больше, каждая лампа должна иметь самостоятельный аппарат защиты. 6.2.11. В начале каждой групповой линии, в том числе питаемой от шинопроводов, должны быть установлены аппараты защиты на всех фазных проводниках. Установка аппаратов защиты в нулевых защитных проводниках запрещается. 6.2.12. Рабочие нулевые проводники групповых линий должны прокладываться при применении металлических труб совместно с фазными проводниками в одной трубе, а при прокладке кабелями или многожильными проводами должны быть заключены в общую оболочку с фазными проводами. 6.2.13. Совместная прокладка проводов и кабелей групповых линий рабочего освещения с групповыми линиями освещения безопасности и эвакуационного освещения не рекомендуется. Допускается их совместная прокладка на одном монтажном профиле, в одном коробе, лотке при условии, что приняты специальные меры, исключающие возможность повреждения проводов освещения безопасности и эвакуационного при неисправности проводов рабочего освещения, в корпусах и штангах светильников. 6.2.14. Светильники рабочего освещения, освещения безопасности или эвакуационного освещения допускается питать от разных фаз одного трехфазного шинопровода при условии прокладки к шинопроводу самостоятельных линий для рабочего освещения и освещения безопасности или эвакуационного освещения. 6.2.15. Светильники, устанавливаемые в подвесные потолки из горючих материалов, должны иметь между местами их примыкания к конструкции потолка прокладки из негорючих теплостойких материалов в соответствии с требованиями НПБ 249-97.
Ионные и лазерные установки
7.5.75. Ионные и лазерные установки должны компоноваться, а входящие в их состав блоки размещаться с учетом мер, обеспечивающих помехоустойчивость управляющих и измерительных цепей этих установок от электромагнитного воздействия, вызываемого флуктуацией газового разряда, обусловливающей характер изменения нагрузки источника питания.
Источники света, установка осветительных приборов и опор
6.3.1. Для наружного освещения могут применяться любые источники света (см. п. 6.1.11). Для охранного освещения территорий предприятий применение разрядных ламп не допускается в случаях, когда охранное освещение нормально не включено и включается автоматически от действия охранной сигнализации. 6.3.2. Осветительные приборы наружного освещения (светильники, прожекторы) могут устанавливаться на специально предназначенных для такого освещения опорах, а также на опорах воздушных линий до 1 кВ, опорах контактной сети электрифицированного городского транспорта всех видов токов напряжением до 600 В, стенах и перекрытиях зданий и сооружений, мачтах (в том числе мачтах отдельно стоящих молниеотводов), технологических эстакадах, площадках технологических установок и дымовых труб, парапетах и ограждениях мостов и транспортных эстакад, на металлических, железобетонных и других конструкциях зданий и сооружений независимо от отметки их расположения, могут быть подвешены на тросах, укрепленных на стенах зданий и опорах, а также установлены на уровне земли и ниже. 6.3.3. Установка светильников наружного освещения на опорах ВЛ до 1 кВ должна выполняться: 1. При обслуживании светильников с телескопической вышки с изолирующим звеном, как правило, выше проводов ВЛ или на уровне нижних проводов ВЛ при размещении светильников и проводов ВЛ с разных сторон опоры. Расстояние по горизонтали от светильника до ближайшего провода ВЛ должно быть не менее 0,6 м. 2. При обслуживании светильников иными способами - ниже проводов ВЛ. Расстояние по вертикали от светильника до провода ВЛ (в свету) должно быть не менее 0,2 м, расстояние по горизонтали от светильника до опоры (в свету) должно быть не более 0,4 м. 6.3.4. При подвеске светильников на тросах должны приниматься меры по исключению раскачивания светильников от воздействия ветра. 6.3.5. Над проезжей частью улиц, дорог и площадей светильники должны устанавливаться на высоте не менее 6,5 м. При установке светильников над контактной сетью трамвая высота установки светильников должна быть не менее 8 м до головки рельса.
При расположении светильников над контактной сетью троллейбуса - не менее 9 м от уровня проезжей части. Расстояние по вертикали от проводов линий уличного освещения до поперечин контактной сети или до подвешенных к поперечинам иллюминационных гирлянд должно быть не менее 0,5 м. 6.3.6. Над бульварами и пешеходными дорогами светильники должны устанавливаться на высоте не менее 3 м. Наименьшая высота установки осветительных приборов для освещения газонов и фасадов зданий и сооружений и для декоративного освещения не ограничивается при условии соблюдения требований п. 6.1.15. Установка осветительных приборов в приямках ниже уровня земли разрешается при наличии дренажных или других аналогичных устройств по удалению воды из приямков. 6.3.7. Для освещения транспортных развязок, городских и других площадей светильники могут устанавливаться на опорах высотой 20 м и более при условии обеспечения безопасности их обслуживания (например опускание светильников, устройство площадок, использование вышек и т.п.). Допускается размещать светильники в парапетах и ограждениях мостов и эстакад из негорючих материалов на высоте 0,9-1,3 м над проезжей частью при условии защиты от прикосновений к токоведущим частям светильников. 6.3.8. Опоры установок освещения площадей, улиц, дорог должны располагаться на расстоянии не менее 1 м от лицевой грани бортового камня до внешней поверхности цоколя опоры на магистральных улицах и дорогах с интенсивным транспортным движением и не менее 0,6 м на других улицах, дорогах и площадях. Это расстояние разрешается уменьшать до 0,3 м при условии отсутствия маршрутов городского транспорта и грузовых машин. При отсутствии бортового камня расстояние от кромки проезжей части до внешней поверхности цоколя опоры должно быть не менее 1,75 м. На территориях промышленных предприятий расстояние от опоры наружного освещения до проезжей части рекомендуется принимать не менее 1 м. Допускается уменьшение этого расстояния до 0,6 м. 6.3.9. Опоры освещения улиц и дорог, имеющих разделительные полосы шириной 4 м и более, могут устанавливаться по центру разделительных полос. 6.3.10.
На улицах и дорогах, имеющих кюветы, допускается устанавливать опоры за кюветом, если расстояние от опоры до ближайшей границы проезжей части не превышает 4 м. Опора не должна находиться между пожарным гидрантом и проезжей частью. 6.3.11. Опоры на пересечениях и примыканиях улиц и дорог рекомендуется устанавливать на расстоянии не менее 1,5 м от начала закругления тротуаров, не нарушая линии установки опор. 6.3.12. Опоры наружного освещения на инженерных сооружениях (мостах, путепроводах, транспортных эстакадах и т.п.) следует устанавливать в створе ограждений в стальных станинах или на фланцах, прикрепляемых к несущим элементам инженерного сооружения. 6.3.13. Опоры для светильников освещения аллей и пешеходных дорог должны располагаться вне пешеходной части. 6.3.14. Светильники на улицах и дорогах с рядовой посадкой деревьев должны устанавливаться вне крон деревьев на удлиненных кронштейнах, обращенных в сторону проезжей части улицы, или следует применять тросовую подвеску светильников.
Измерение частоты
1.6.16. Измерение частоты должно производиться: 1) на каждой секции шин генераторного напряжения; 2) на каждом генераторе блочной тепловой или атомной электростанции; 3) на каждой системе (секции) шин высшего напряжения электростанции; 4) в узлах возможного деления энергосистемы на несинхронно работающие части. 1.6.17. Регистрация частоты или ее отклонения от заданного значения должна производиться: 1) на электростанциях мощностью 200 МВт и более; 2) на электростанциях мощностью 6 МВт и более, работающих изолированно. 1.6.18. Абсолютная погрешность регистрирующих частотомеров на электростанциях, участвующих в регулировании мощности, должна быть не более ± 0,1 Гц.
Измерение мощности
1.6.13. Измерение мощности должно производиться в цепях: 1) генераторов - активной и реактивной мощности. При установке на генераторах мощностью 100 МВт и более щитовых показывающих приборов их класс точности должен быть не хуже 1,0. На электростанциях мощностью 200 МВт и более должна также измеряться суммарная активная мощность. Рекомендуется измерять суммарную активную мощность электростанций мощностью менее 200 МВт при необходимости автоматической передачи этого параметра на вышестоящий уровень оперативного управления; 2) конденсаторных батарей мощностью 25 МВАр и более и синхронных компенсаторов - реактивной мощности; 3) трансформаторов и линий, питающих СН напряжением 6 кВ и выше тепловых электростанций, - активной мощности; 4) повышающих двухобмоточных трансформаторов электростанций - активной и реактивной мощности. В цепях повышающих трехобмоточных трансформаторов (или автотрансформаторов с использованием обмотки низшего напряжения) измерение активной и реактивной мощности должно производиться со стороны среднего и низшего напряжений. Для трансформатора, работающего в блоке с генератором, измерение мощности со стороны низшего напряжения следует производить в цепи генератора; 5) понижающих трансформаторов 220 кВ и выше - активной и реактивной, напряжением 110-150 кВ - активной мощности. В цепях понижающих двухобмоточных трансформаторов измерение мощности должно производиться со стороны низшего напряжения, а в цепях понижающих трехобмоточных трансформаторов - со стороны среднего и низшего напряжений. На подстанциях 110 - 220 кВ без выключателей на стороне высшего напряжения измерение мощности допускается не выполнять. При этом должны предусматриваться места для присоединения контрольных показывающих или регистрирующих приборов; 6) линий напряжением 110 кВ и выше с двусторонним питанием, а также обходных выключателей - активной и реактивной мощности; 7) на других элементах подстанций, где для периодического контроля режимов сети необходимы измерения перетоков активной и реактивной мощности, должна предусматриваться возможность присоединения контрольных переносных приборов. 1.6.14. При установке щитовых показывающих приборов в цепях, в которых направление мощности может изменяться, эти приборы должны иметь двустороннюю шкалу. 1.6.15. Должна производиться регистрация: 1) активной мощности турбогенераторов (мощностью 60 МВт и более); 2) суммарной мощности электростанций (мощностью 200 МВт и более).
Измерение напряжения
1.6.9. Измерение напряжения, как правило, должно производиться: 1) на секциях сборных шин постоянного и переменного тока, которые могут работать раздельно. Допускается установка одного прибора с переключением на несколько точек измерения. На подстанциях допускается измерять напряжение только на стороне низшего напряжения, если установка трансформаторов напряжения на стороне высшего напряжения не требуется для других целей; 2) в цепях генераторов постоянного и переменного тока, синхронных компенсаторов, а также в отдельных случаях в цепях агрегатов специального назначения. При автоматизированном пуске генераторов или других агрегатов установка на них приборов для непрерывного измерения напряжения не обязательна; 3) в цепях возбуждения синхронных машин мощностью 1 МВт и более. В цепях возбуждения гидрогенераторов измерение не обязательно; 4) в цепях силовых преобразователей, аккумуляторных батарей, зарядных и подзарядных устройств; 5) в цепях дугогасящих реакторов. 1.6.10. В трехфазных сетях производится измерение, как правило, одного междуфазного напряжения. В сетях напряжением выше 1 кВ с эффективно заземленной нейтралью допускается измерение трех междуфазных напряжений для контроля исправности цепей напряжением одним прибором (с переключением). 1.6.11. Должна производиться регистрация значений одного междуфазного напряжения сборных шин 110 кВ и выше (либо отклонения напряжения от заданного значения) электростанций и подстанций, по напряжению на которых ведется режим энергосистемы.
Измерение тока
1.6.6. Измерение тока должно производиться в цепях всех напряжений, где оно необходимо для систематического контроля технологического процесса или оборудования. 1.6.7. Измерение постоянного тока должно производиться в цепях: 1) генераторов постоянного тока и силовых преобразователей, 2) аккумуляторных батарей, зарядных, подзарядных и разрядных устройств; 3) возбуждения синхронных генераторов, компенсаторов, а также электродвигателей с регулируемым возбуждением. Амперметры постоянного тока должны иметь двусторонние шкалы, если возможно изменение направления тока. 1.6.8. В цепях переменного трехфазного тока следует, как правило, измерять ток одной фазы. Измерение тока каждой, фазы должно производиться: 1) для синхронных турбогенераторов мощностью 12 МВт и более; 2) для линий электропередачи с пофазным управлением, линий с продольной компенсацией и линий, для которых предусматривается возможность длительной работы в неполнофазном режиме, в обоснованных случаях может быть предусмотрено измерение тока каждой фазы линий электропередачи 330 кВ и выше с трехфазным управлением; 3) для дуговых электропечей.
Измерения электрических величин
Область применения Общие требования Измерение тока Измерение напряжения Контроль изоляции Измерение мощности Измерение частоты Измерения при синхронизации Регистрация электрических величин в аварийных режимах
Измерения при синхронизации
1.6.19. Для измерений при точной (ручной или полуавтоматической) синхронизации должны предусматриваться следующие приборы: два вольтметра (или двойной вольтметр); два частотомера (или двойной частотомер); синхроноскоп.
Измерительные трансформаторы напряжения
1. Электромагнитные трансформаторы напряжения. 1.1. Измерение сопротивления изоляции обмоток. Измерение сопротивления изоляции обмотки ВН трансформаторов напряжения производится мегаомметром на напряжение 2500 В. Измерение сопротивления изоляции вторичных обмоток, а также связующих обмоток каскадных трансформаторов напряжения производится мегаомметром на напряжение 1000 В. Измеренные значения сопротивления изоляции должны быть не менее приведенных в табл. 1.8.15. 1.2. Испытание повышенным напряжением частоты 50 Гц. Испытание изоляции обмотки ВН повышенным напряжением частоты 50 Гц проводятся для трансформаторов напряжения с изоляцией всех выводов обмотки ВН этих трансформаторов на номинальное напряжение. Значения испытательного напряжения основной изоляции приведены в табл. 1.8.15. Длительность испытания трансформаторов напряжения - 1 мин. Значение испытательного напряжения для изоляции вторичных обмоток вместе с присоединенными к ним цепями принимается равным 1 кВ. Продолжительность приложения испытательного напряжения - 1 мин. 1.3. Измерение сопротивления обмоток постоянному току. Измерение сопротивления обмоток постоянному току производится у связующих обмоток каскадных трансформаторов напряжения. Отклонение измеренного сопротивления обмотки постоянному току от паспортного значения или от измеренного на других фазах не должно превышать 2%. При сравнении измеренного значения с паспортными данными измеренное значение сопротивления должно приводиться к температуре заводских испытаний. При сравнении с другими фазами измерения на всех фазах должны проводиться при одной и той же температуре. 1.4. Испытание трансформаторного масла. При вводе в эксплуатацию трансформаторов напряжения масло должно быть испытано в соответствии с требованиями табл.1.8.32 пп.1-6. У маслонаполненных каскадных трансформаторов напряжения оценка состояния масла в отдельных ступенях проводится по нормам, соответствующим рабочему напряжению ступени. 2. Емкостные трансформаторы напряжения. 2.1.
Испытание конденсаторов делителей напряжения. Испытание конденсаторов делителей напряжения проводятся в соответствии с требованиями раздела 1.8.27. 2.2. Измерение сопротивления изоляция электромагнитного устройства. Измерение сопротивления изоляции обмоток проводится мегаомметром на 2500 В. Сопротивление изоляции не должно отличаться от указанного в паспорте более чем на 30% в худшую сторону, но составлять не менее 300 МОм. 2.3. Испытание электромагнитного устройства повышенным напряжением частоты 50 Гц. Испытаниям подвергается изоляция вторичных обмоток электромагнитного устройства. Испытательное напряжение - 1,8 кВ. Длительность приложения напряжения - 1 мин. 2.4. Измерение сопротивления обмоток постоянному току. При вводе в эксплуатацию измерение сопротивления обмоток постоянному току производится на всех положениях переключающего устройства. Измеренные значения, приведенные к температуре при заводских испытаниях, не должны отличаться от указанных в паспорте более чем на 5%. 2.5. Измерение тока и потерь холостого хода. Измерение тока и потерь холостого хода производится при напряжениях, указанных в заводской документации. Измеренные значения не должны отличаться от указанных в паспорте более чем на 10%. 2.6. Испытание трансформаторного масла из электромагнитного устройства. Значение пробивного напряжения масла должно быть не менее 30 кВ. При вводе в эксплуатацию свежее сухое трансформаторное масло для заливки (доливки) электромагнитного устройства должно быть испытано в соответствии с требованиями табл.1.8.33 пп.1-6. 2.7. Испытание вентильных разрядников. Проводятся согласно указаниям раздела 1.8.31. Таблица 1.8.15 Сопротивление изоляции трансформаторов напряжения
Класс напряжения, кВ | Допустимые сопротивления изоляции, МОм, не менее | ||
Основная изоляция | Вторичные обмотки * | Связующие обмотки * | |
3-35 | 100 | 50(1) | 1 |
110-500 | 300 | 50(1) | 1 |
Измерительные трансформаторы тока
1. Измерение сопротивления изоляции. Измерение сопротивления основной изоляции трансформаторов тока, изоляции измерительного конденсатора и вывода последней обкладки бумажно-масляной изоляции конденсаторного типа производится мегаомметром на 2500 В. Измерение сопротивления вторичных обмоток и промежуточных обмоток каскадных трансформаторов тока относительно цоколя производится мегаомметром на 1000 В. Измеренные значения сопротивления изоляции должны быть не менее приведенных в табл. 1.8.13. У каскадных трансформаторов тока сопротивление изоляции измеряется для трансформатора тока в целом. При неудовлетворительных результатах таких измерений сопротивление изоляции дополнительно измеряется по ступеням. 2. Измерение tg ? изоляции. Измерения tg ? трансформаторов тока с основной бумажно-масляной изоляцией производятся при напряжении 10 кВ. Измеренные значения, приведенные к температуре 20 ?С, должны быть не более указанных в табл. 1.8.14. У каскадных трансформаторов тока tg ? основной изоляции измеряется для трансформатора тока в целом. При неудовлетворительных результатах таких измерений tg ? основной изоляции дополнительно производится измерение по ступеням. 3. Испытание повышенным напряжением промышленной частоты 50 Гц. 3.1. Испытание повышенным напряжением основной изоляции. Значения испытательного напряжения основной изоляции приведены в табл. 1.8.16. Длительность испытания трансформаторов тока - 1 мин. Допускается проведение испытаний трансформаторов тока совместно с ошиновкой. Трансформаторы тока напряжением более 35 кВ не подвергаются испытаниям повышенным напряжением. 3.2. Испытание повышенным напряжением изоляции вторичных обмоток. Значение испытательного напряжения для изоляции вторичных обмоток вместе с присоединенными к ним цепями принимается равным 1 кВ. Продолжительность приложения испытательного напряжения - 1 мин. 4. Снятие характеристик намагничивания. Характеристика снимается повышением напряжения на одной из вторичных обмоток до начала насыщения, но не выше 1800 В.
При наличии у обмоток ответвлений характеристика снимается на рабочем ответвлении. Снятая характеристика сопоставляется с типовой характеристикой намагничивания или с характеристиками намагничивания исправных трансформаторов тока, однотипных с проверяемыми. Отличия от значений, измеренных на заводе-изготовителе, или от измеренных на исправном трансформаторе тока, однотипном с проверяемым, не должны превышать 10%. Допускается снятие только трех контрольных точек. 5. Измерение коэффициента трансформации. Отклонение измеренного коэффициента от указанного в паспорте или от измеренного на исправном трансформаторе тока, однотипном с проверяемым, не должно превышать 2%. 6. Измерение сопротивления вторичных обмоток постоянному току. Измерение проводится у трансформаторов тока на напряжение 110 кВ и выше. Отклонение измеренного сопротивления обмотки постоянному току от паспортного значения или от измеренного на других фазах не должно превышать 2%. При сравнении измеренного значения с паспортными данными измеренное значение сопротивления должно приводиться к заводской температуре. При сравнении с другими фазами измерения на всех фазах должны проводиться при одной и той же температуре. 7. Испытания трансформаторного масла. При вводе в эксплуатацию трансформаторов тока трансформаторное масло должно быть испытано в соответствии с требованиями табл. 1.8.33 пп.1-6, а у герметичных и по п.10. У маслонаполненных каскадных трансформаторов тока оценка состояния трансформаторного масла в каждой ступени проводится по нормам, соответствующим рабочему напряжению ступени. 8. Испытание встроенных трансформаторов тока. Производится по пп.1, 3.2, 4-6. Измерение сопротивления изоляции встроенных трансформаторов тока производится мегаомметром на напряжение 1000 В. Измеренное сопротивление изоляции без вторичных цепей должно быть не менее 10 МОм. Допускается измерение сопротивления изоляции встроенных трансформаторов тока вместе со вторичными цепями. Измеренное сопротивление изоляции должно быть не менее 1 МОм.
Таблица 1.8.13 Сопротивление изоляции каскадных трансформаторов тока
Класс напряжения, кВ | Допустимые сопротивления изоляции, МОм, не менее | ||||
Основная изоляция | Измерительный вывод | Наружные слои | Вторичные обмотки * | Промежуточные обмотки | |
3-35 | 1000 | - | - | 50(1) | - |
110-220 | 3000 | - | - | 50(1) | - |
330-750 | 5000 | 3000 | 1000 | 50(1) | 1 |
Тип изоляции | Предельные значения tg ?, %, основной изоляции трансформаторов тока на номинальное | ||||||
3-15 | 20-35 | 110 | 220 | 330 | 500 | 750 | |
Бумажно-бакелитовая | 3,0 | 2,5 | 2,0 | - | - | - | - |
Основная бумажно-масляная и конденсаторная изоляция | - | 2,5 | 2,0 | 1,0 | Не более 150% от измеренного на заводе, но не выше 0,8 |
Изоляция
2.4.35. Самонесущий изолированный провод крепится к опорам без применения изоляторов. 2.4.36. На ВЛ с неизолированными и изолированными проводами независимо от материала опор, степени загрязнения атмосферы и интенсивности грозовой деятельности следует применять изоляторы либо траверсы из изоляционных материалов. Выбор и расчет изоляторов и арматуры выполняются в соответствии с 2.5.100. 2.4.37. На опорах ответвлений от ВЛ с неизолированными и изолированными проводами следует, как правило, применять многошейковые или дополнительные изоляторы.
Изоляция электроустановок
Область применения. Определения Общие требования Изоляция ВЛ Внешняя стеклянная и фарфоровая изоляция электрооборудования и ОРУ Выбор изоляции по разрядным характеристикам Определение степени загрязнения Коэффициенты использования основных типов изоляторов и изоляционных конструкций (стеклянных и фарфоровых)
Изоляция ВЛ
1.9.10. Удельная эффективная длина пути утечки поддерживающих гирлянд изоляторов и штыревых изоляторов ВЛ на металлических и железобетонных опорах в зависимости от СЗ и номинального напряжения (на высоте до 1000 м над уровнем моря) должна приниматься по табл. 1.9.1. Удельная эффективная длина пути утечки поддерживающих гирлянд и штыревых изоляторов ВЛ на высоте более 1000 м над уровнем моря должна быть увеличена по сравнению с нормированной в табл. 1.9.1: от 1000 до 2000 м - на 5 %; от 2000 до 3000 м - на 10 %; от 3000 до 4000 м - на 15 %. Таблица 1.9.1 Удельная эффективная длина пути утечки поддерживающих гирлянд изоляторов и штыревых изоляторов ВЛ на металлических и железобетонных опорах, внешней изоляции электрооборудования и изоляторов ОРУ
Степень загрязнения | ?э, см/кВ (не менее), при номинальном напряжении, кВ | |
до 35 включительно | 110-750 | |
1 | 1,90 | 1,60 |
2 | 2,35 | 2,00 |
3 | 3,00 | 2,50 |
4 | 3,50 | 3,10 |
На ВЛ напряжением 150-750 кВ на металлических и железобетонных опорах количество тарельчатых изоляторов в натяжных гирляндах должно определяться по 1.9.12. 1.9.14. На ВЛ напряжением 35-220 кВ с деревянными опорами в районах с 1-2-й СЗ количество подвесных тарельчатых изоляторов из стекла или фарфора допускается принимать на 1 меньше, чем для ВЛ на металлических или железобетонных опорах. На ВЛ напряжением 6-20 кВ с деревянными опорами или деревянными траверсами на металлических и железобетонных опорах в районах с 1-2-й СЗ удельная эффективная длина пути утечки изоляторов должна быть не менее 1,5 см/кВ. 1.9.15. В гирляндах опор больших переходов должно предусматриваться по одному дополнительному тарельчатому изолятору из стекла или фарфора на каждые 10 м превышения высоты опоры сверх 50 м по отношению к количеству изоляторов нормального исполнения, определенному для одноцепных гирлянд при ?э = 1,9 см/кВ для ВЛ напряжением 6-35 кВ и ?э = 1,4 см/кВ для ВЛ напряжением 110-750 кВ. При этом количество изоляторов в гирляндах этих опор должно быть не менее требуемого по условиям загрязнения в районе перехода. 1.9.16. В гирляндах тарельчатых изоляторов из стекла или фарфора, подвешенных на высоте более 100 м, должны предусматриваться сверх определенного в соответствии с 1.9.12 и 1.9.15 два дополнительных изолятора. 1.9.17. Выбор изоляции ВЛ с изолированными проводами должен производиться в соответствии с 1.9.10 - 1.9.16.
Изоляторы и арматура
2.5.97. На ВЛ 110 кВ и выше должны применяться подвесные изоляторы, допускается применение стержневых и опорно-стержневых изоляторов. На ВЛ 35 кВ должны применяться подвесные или стержневые изоляторы. Допускается применение штыревых изоляторов. На ВЛ 20 кВ и ниже должны применяться: 1) на промежуточных опорах - любые типы изоляторов; 2) на опорах анкерного типа - подвесные изоляторы, допускается применение штыревых изоляторов в районе по гололеду I и в ненаселенной местности. 2.5.98. Выбор типа и материала (стекло, фарфор, полимерные материалы) изоляторов производится с учетом климатических условий (температуры и увлажнения) и условий загрязнения. На ВЛ 330 кВ и выше рекомендуется применять, как правило, стеклянные изоляторы; на ВЛ 35 - 220 кВ - стеклянные, полимерные и фарфоровые, преимущество должно отдаваться стеклянным или полимерным изоляторам. На ВЛ, проходящих в особо сложных для эксплуатации условиях (горы, болота, районы Крайнего Севера и т. п.), на ВЛ, сооружаемых на двухцепных и многоцепных опорах, на ВЛ, питающих тяговые подстанции электрифицированных железных дорог, и на больших переходах независимо от напряжения следует применять стеклянные изоляторы или, при наличии соответствующего обоснования, полимерные. 2.5.99. Выбор количества изоляторов в гирляндах производится в соответствии с гл. 1.9. 2.5.100. Изоляторы и арматура выбираются по нагрузкам в нормальных и аварийных режимах работы ВЛ при климатических условиях, указанных в 2.5.71 и 2.5.72 соответственно. Горизонтальная нагрузка в аварийных режимах поддерживающих гирлянд изоляторов определяется согласно 2.5.141, 2.5.142 и 2.5.143. Расчетные усилия в изоляторах и арматуре не должны превышать значений разрушающих нагрузок (механической или электромеханической для изоляторов и механической для арматуры), установленных государственными стандартами и техническими условиями, деленных на коэффициент надежности по материалу ?м. Для ВЛ, проходящих в районах со среднегодовой температурой минус 10 ?С и ниже или в районах с низшей температурой минус 50 ?С и ниже, расчетные усилия в изоляторах и арматуре умножаются на коэффициент условий работы ?d = 1,4 , для остальных ВЛ ?d = 1,0. 2.5.101.
Коэффициенты надежности по материалу ?м для изоляторов и арматуры должны быть не менее: 1)в нормальном режиме: при наибольших нагрузках - 2,5 при среднеэксплуатационных нагрузках для изоляторов: для поддерживающих гирлянд - 5,0 для натяжных гирлянд - 6,0 2) в аварийном режиме: для ВЛ 500 кВ и 750 кВ - 2,0 для ВЛ 330 кВ и ниже - 1,8 3)в нормальном и аварийных режимах: для крюков и штырей - 1,1 2.5.102. В качестве расчетного аварийного режима работы двух- и многоцепных поддерживающих и натяжных гирлянд изоляторов с механической связкой между цепями изоляторов (2.5.111) следует принимать обрыв одной цепи. При этом расчетные нагрузки от проводов и тросов принимаются для климатических условий, указанных в 2.5.71 в режимах, дающих наибольшие значения нагрузок, а расчетные усилия в оставшихся в работе цепях изоляторов не должны превышать 90 % механической (электромеханической) разрушающей нагрузки изоляторов. 2.5.103. Конструкции поддерживающих и натяжных гирлянд изоляторов должны обеспечивать возможность удобного производства строительно-монтажных и ремонтных работ. 2.5.104. Крепление проводов к подвесным изоляторам и крепление тросов следует производить при помощи глухих поддерживающих или натяжных зажимов. Крепление проводов к штыревым изоляторам следует производить проволочными вязками или специальными зажимами. 2.5.105. Радиопомехи, создаваемые гирляндами изоляторов и арматурой при наибольшем рабочем напряжении ВЛ, не должны превышать значения, нормируемые государственными стандартами. 2.5.106. Поддерживающие гирлянды изоляторов ВЛ 750 кВ должны выполняться двухцепными с раздельным креплением к опоре. 2.5.107. Поддерживающие гирлянды изоляторов для промежуточно-угловых опор ВЛ 330 кВ и выше должны выполняться двух-цепными. 2.5.108. На ВЛ 110 кВ и выше в условиях труднодоступной местности рекомендуется применение двухцепных поддерживающих и натяжных гирлянд изоляторов с раздельным креплением к опоре. 2.5.109. В двухцепных поддерживающих гирляндах изоляторов цепи следует располагать вдоль оси ВЛ. 2.5.110.
Для защиты проводов шлейфов (петель) от повреждений при соударении с арматурой натяжных гирлянд изоляторов ВЛ с фазами, расщепленными на три провода и более, на них должны быть установлены предохранительные муфты в местах приближения проводов шлейфа к арматуре гирлянды. 2.5.111. Двух- и трехцепные натяжные гирлянды изоляторов следует предусматривать с раздельным креплением к опоре. Допускается натяжные гирлянды с количеством цепей более трех крепить к опоре не менее чем в двух точках. Конструкции натяжных гирлянд изоляторов расщепленных фаз и их узел крепления к опоре должны обеспечивать раздельный монтаж и демонтаж каждого провода, входящего в расщепленную фазу. 2.5.112. На ВЛ 330 кВ и выше в натяжных гирляндах изоляторов с раздельным креплением цепей к опоре должна быть предусмотрена механическая связка между всеми цепями гирлянды, установленная со стороны проводов. 2.5.113. В натяжных гирляндах изоляторов ВЛ 330 кВ и выше со стороны пролета должна быть установлена экранная защитная арматура. 2.5.114. В одном пролете ВЛ допускается не более одного соединения на каждый провод и трос. В пролетах пересечения ВЛ с улицами (проездами), инженерными сооружениями, перечисленными в 2.5.231 - 2.5.268, 2.5.279, водными пространствами одно соединение на провод (трос) допускается: при сталеалюминиевых проводах с площадью сечения по алюминию 240 мм2 и более независимо от содержания стали; при сталеалюминиевых проводах с отношениям А/С ?1,49 для любой площади сечения алюминия; при стальных тросах с площадью сечения 120 мм2 и более; при расщеплении фазы на три сталеалюминиевых провода с площадью сечения по алюминию 150 мм2 и более. Не допускается соединение проводов (тросов) в пролетах пересечения ВЛ между собой на пересекающих (верхних) ВЛ, а также в пролетах пересечения ВЛ с надземными и наземными трубопроводами для транспорта горючих жидкостей и газов. 2.5.115. Прочность заделки проводов и тросов в соединительных и натяжных зажимах должна составлять не менее 90 % разрывного усилия проводов и канатов при растяжении.
Элегазовые выключатели
1. Измерение сопротивления изоляции вторичных цепей и обмоток электромагнитов управления. Измерение должно выполняться согласно указаниям раздела 1.8.37. 2. Испытание изоляции выключателя. 2.1. Испытание изоляции должно выполняться напряжением промышленной частоты согласно табл.1.8.16. Допускается не производить испытание выключателей, заполненных элегазом на заводе-изготовителе и не подлежащих вскрытию в течение всего срока службы. 2.2. Испытание изоляции вторичных цепей и обмоток электромагнитов управления должно выполняться в соответствии с указаниями раздела 1.8.37. 3. Измерение сопротивления постоянному току. 3.1. Измерение сопротивления главной цепи. Сопротивление главной цепи должно измеряться как в целом всего токоведущего контура полюса, так и отдельно каждого разрыва дугогасительного устройства. Измеренные значения должны соответствовать нормам завода-изготовителя. Измерения не производятся у выключателей, заполненных элегазом на заводе-изготовителе и не подлежащих вскрытию в течение всего срока службы. 3.2 Измерение сопротивления обмоток электромагнитов управления и добавочных резисторов в их цепи. Измеренные значения сопротивлений должны соответствовать нормам завода-изготовителя. 4. Проверка минимального напряжения срабатывания выключателей. Выключатели должны срабатывать при напряжении не более 0,85·Uном при питании привода от источника постоянного тока; 0,7·Uном при питании привода от сети переменного тока при номинальном давлении элегаза в полостях выключателя и наибольшем рабочем давлении в резервуарах привода. Напряжение на электромагниты должно подаваться толчком. 5. Испытание конденсаторов делителей напряжения. Испытания должны выполняться согласно указаниям 1.8.30. Значение измеренной емкости должно соответствовать норме завода-изготовителя. 6. Проверка характеристик выключателя. При проверке работы элегазовых выключателей должны определяться характеристики, предписанные заводскими инструкциями. Результаты проверок и измерений должны соответствовать паспортным данным. 7.
Испытание выключателей многократными опробованиями. Многократные опробования - выполнение операций включения и отключения и сложных циклов ( ВО без выдержки времени между операциями - для всех выключателей; OВ и ОВО - для выключателей, предназначенных для работы в режиме АПВ) - должны производиться при различных давлениях сжатого воздуха в приводе и напряжениях на выводах электромагнитов управления с целью проверки исправности действия выключателей согласно таблице 1.8.20. Производятся при номинальном напряжении на выводах электромагнитов привода или при номинальном давлении сжатого воздуха привода. Число операций и сложных циклов, подлежащих выполнению выключателем, должно составлять: - 3-5 операций включения и отключения; - 2-3 цикла каждого вида. 8. Проверка герметичности. Проверка герметичности производится с помощью течеискателя. При испытании на герметичность щупом течеискателя обследуются места уплотнений стыковых соединений и сварных швов выключателя. Результат испытания на герметичность считается удовлетворительным, если течеискатель не показывает утечки. Испытание производится при номинальном давлении элегаза. 9. Проверка содержания влаги в элегазе. Содержание влаги в элегазе определяется перед заполнением выключателя элегазом на основании измерения точки росы. Температура точки росы элегаза должна быть не выше минус 50 ?С. 10. Испытание встроенных трансформаторов тока. Испытания должны выполняться в соответствии с указаниями 1.8.17.
Электрическая часть
4.4.3. Выбор электронагревательных устройств, светильников, электродвигателей вентиляции и электропроводок для основных и вспомогательных помещений аккумуляторных батарей, а также установка и монтаж указанного электрооборудования должны производиться в соответствии с требованиями, приведенными в гл. 7.3. 4.4.4. Зарядное устройство должно иметь мощность и напряжение, достаточные для заряда аккумуляторной батареи на 90% номинальной емкости в течение не более 8 ч при предшествующем 30-минутном разряде. 4.4.5. Аккумуляторная установка должна быть оборудована вольтметром с переключателем и амперметрами в цепях зарядного, подзарядного устройств и аккумуляторной батареи. 4.4.6. Для зарядных и подзарядных двигателей-генераторов должны предусматриваться устройства для их отключения при появлении обратного тока. 4.4.7. В цепи аккумуляторной батареи, как правило, должен устанавливаться автоматический выключатель, селективный по отношению к защитным аппаратам сети. 4.4.8. Подзарядное устройство должно обеспечивать стабилизацию напряжения на шинах батареи в пределах ± 2%. 4.4.9. Аккумуляторные установки, в которых применяется режим заряда батарей с напряжением не более 2,3 В на элемент, должны иметь устройство, не допускающее самопроизвольного повышения напряжения до уровня выше 2,3 В на элемент. 4.4.10. Выпрямительные установки, применяемые для заряда и подзаряда аккумуляторных батарей, должны присоединяться со стороны переменного тока через разделительный трансформатор. 4.4.11. Шины постоянного тока должны быть снабжены устройством для постоянного контроля изоляции, позволяющим оценивать значение сопротивления изоляции и действующим на сигнал при снижении сопротивления изоляции одного из полюсов до 20 кОм в сети 220 В, 10 кОм в сети 110 В, 5 кОм в сети 48 В и 3 кОм в сети 24 В. 4.4.12. Для аккумуляторной батареи следует предусматривать блокировку, не допускающую проведения заряда батареи с напряжением более 2,3 В на элемент при отключенной вентиляции. 4.4.13. В помещении аккумуляторной батареи один светильник должен быть присоединен к сети аварийного освещения. 4.4.14.
Аккумуляторы должны устанавливаться на стеллажах или на полках шкафа. Расстояния по вертикали между стеллажами или полками шкафа должны обеспечивать удобное обслуживание аккумуляторной батареи. Аккумуляторы могут устанавливаться в один ряд при одностороннем их обслуживании или в два ряда при двустороннем. В случае применения сдвоенных стеклянных сосудов они рассматриваются как один аккумулятор. 4.4.15. Стеллажи для установки аккумуляторов должны быть выполнены, испытаны и маркированы в соответствии с требованиями ГОСТ или технических условий; они должны быть защищены от воздействия электролита стойким покрытием. 4.4.16. Аккумуляторы должны быть изолированы от стеллажей, а стеллажи - от земли посредством изолирующих подкладок, стойких против воздействия электролита и его паров. Стеллажи для аккумуляторных батарей напряжением не выше 48 В могут устанавливаться без изолирующих подкладок. 4.4.17. Проходы для обслуживания аккумуляторных батарей должны быть шириной в свету между аккумуляторами не менее 1 м при двустороннем расположении аккумуляторов и 0,8 м при одностороннем. Размещение аккумуляторных батарей должно производиться с соблюдением требований ГОСТ на стеллажи для стационарных установок электрических аккумуляторов. 4.4.18. Расстояние от аккумуляторов до отопительных приборов должно быть не менее 750 мм. Это расстояние может быть уменьшено при условии установки тепловых экранов из несгораемых материалов, исключающих местный нагрев аккумуляторов. 4.4.19. Расстояния между токоведущими частями аккумуляторов должны быть не менее 0,8 м при напряжении выше 65 В до 250 В в период нормальной работы (не заряда) и 1 м - при напряжении выше 250 В. При установке аккумуляторов в два ряда без прохода между рядами напряжение между токоведущими частями соседних аккумуляторов разных рядов не должно превышать 65 В в период нормальной работы (не заряда). Электрооборудование, а также места соединения шин и кабелей должны быть расположены на расстоянии не менее 1 м от негерметичных аккумуляторов и не менее 0,3 м ниже самой низкой точки потолка. 4.4.20.
Ошиновка аккумуляторных батарей должна выполняться медными или алюминиевыми неизолированными шинами или одножильными кабелями с кислотостойкой изоляцией. Соединения и ответвления медных шин и кабелей должны выполняться сваркой или пайкой, алюминиевых - только сваркой. Соединение шин с проходными стержнями выводной плиты должно выполняться сваркой. Места присоединения шин и кабелей к аккумуляторам должны облуживаться. Электрические соединения от выводной плиты из помещения аккумуляторной батареи до коммутационных аппаратов и распределительного щита постоянного тока должны выполняться одножильными кабелями или неизолированными шинами. 4.4.21. Неизолированные проводники должны быть дважды окрашены кислотостойкой, не содержащей спирта краской по всей длине, за исключением мест соединения шин, присоединения к аккумуляторам и других соединений. Неокрашенные места должны быть смазаны техническим вазелином. 4.4.22. Расстояние между соседними неизолированными шинами определяется расчетом на динамическую стойкость. Указанное расстояние, а также расстояние от шин до частей здания и других заземленных частей должно быть в свету не менее 50 мм. 4.4.23. Шины должны прокладываться на изоляторах и закрепляться на них шинодержателями. Пролет между опорными точками шин определяется расчетом на динамическую стойкость (с учетом 4.4.22), но должен быть не более 2 м. Изоляторы, их арматура, детали для крепления шин и поддерживающие конструкции должны быть электрически и механически стойкими против длительного воздействия паров электролита. Заземление поддерживающих конструкций не требуется. 4.4.24. Выводная плита из помещения аккумуляторной батареи должна быть стойкой против воздействия паров электролита. Рекомендуется применять плиты из пропитанного парафином асбоцемента, эбонита и т. п. Применение для плит мрамора, а также фанеры и других материалов слоистой структуры не допускается. При установке плит в перекрытии плоскость плиты должна возвышаться над ним не менее чем на 100 мм. 4.4.25.При выборе и расчете аккумуляторной батареи следует учитывать уменьшение ее емкости при температуре в помещении аккумуляторной батареи ниже +15 ?С.
Электрические аппараты и приборы
7.3.68. Во взрывоопасных зонах могут применяться электрические аппараты и приборы при условии, что уровень их взрывозащиты или степень защиты оболочки по ГОСТ 14255-69 соответствуют табл. 7.3.11 или являются более высокими. 7.3.69. Во взрывоопасных зонах любого класса электрические соединители могут применяться при условии, если они удовлетворяют требованиям табл. 7.3.11 для аппаратов, искрящих при нормальной работе. Во взрывоопасных зонах классов В-Iб и ВIIа допускается применять соединители в оболочке со степенью защиты IP54 при условии, что разрыв у них происходит внутри закрытых розеток. Установка соединителей допускается только для включения периодически работающих электроприемников (например, переносных светильников). Число соединителей должно быть ограничено необходимым минимумом, и они должны быть расположены в местах, где образование взрывоопасных смесей наименее вероятно. Искробезопасные цепи могут коммутироваться соединителями общего назначения. 7.3.70. Сборки зажимов рекомендуется выносить за пределы взрывоопасной зоны. В случае технической необходимости установки сборок во взрывоопасной зоне они должны удовлетворять требованиям табл. 7.3.11 для стационарных аппаратов, не искрящих при работе. 7.3.71. Предохранители и выключатели осветительных цепей рекомендуется устанавливать вне взрывоопасных зон. 7.3.72. При применении аппаратов и приборов с видом взрывозащиты "искробезопасная электрическая цепь" следует руководствоваться следующим: 1. Индуктивность и емкость искробезопасных цепей, в том числе и присоединительных кабелей (емкость и индуктивность которых определяются по характеристикам, расчетом или измерением), не должны превосходить максимальных значений, оговоренных в технической документации на эти цепи. Если документацией предписываются конкретный тип кабеля (провода) и его максимальная длина, то их изменение возможно только при наличии заключения испытательной организации по ГОСТ 12.2.021-76. 2. В искробезопасные цепи могут включаться изделия, которые предусмотрены технической документацией на систему и имеют маркировку "В комплекте...".
Допускается включать в эти цепи серийно выпускаемые датчики общего назначения, не имеющие собственного источника тока, индуктивности и емкости и удовлетворяющие п. 4. К таким датчикам относятся серийно выпускаемые общего назначения термометры сопротивления, термопары, терморезисторы, фотодиоды и подобные им изделия, встроенные в защитные оболочки. 3. Цепь, состоящая из серийно выпускаемых общего назначения термопары и гальванометра (милливольтметра), является искробезопасной для любой взрывоопасной среды при условии, что гальванометр не содержит других электрических цепей, в том числе подсвета шкалы. 4. В искробезопасные цепи могут включаться серийно выпускаемые общего назначения переключатели, ключи, сборки зажимов и т. п. при условии, что выполняются следующие требования: а) к ним не подключены другие, искроопасные цепи; б) они закрыты крышкой и опломбированы; в) их изоляция рассчитана на трехкратное номинальное напряжение искробезопасной цепи, но не менее чем на 500 В.
Электрические аппараты, вторичные цепи и электропроводки напряжением до кВ
Электрические аппараты и вторичные цепи схем защит, управления, сигнализации и измерения испытываются в объеме, предусмотренном настоящим параграфом. Электропроводки напряжением до 1 кВ от распределительных пунктов до электроприемников испытываются по п.1. 1. Измерение сопротивления изоляции. Сопротивление изоляции должно быть не менее значений, приведенных в табл. 1.8.34. 2. Испытание повышенным напряжением промышленной частоты. Испытательное напряжение для вторичных цепей схем защиты, управления, сигнализации и измерения со всеми присоединительными аппаратами (автоматические выключатели, магнитные пускатели, контакторы, реле, приборы и т.п.) 1 кВ. Продолжительность приложения нормированного испытательного напряжения 1 мин. 3. Проверка действия автоматических выключателей. 3.1. Проверка сопротивления изоляции. Производится у выключателей на номинальный ток 400 А и более. Значение сопротивления изоляции - не менее 1 МОм. 3.2. Проверка действия расцепителей. Проверяется действие расцепителя мгновенного действия. Выключатель должен срабатывать при токе не более 1,1 верхнего значения тока срабатывания выключателя, указанного заводом-изготовителем. В электроустановках, выполненных по требованиям раздела 6, глав 7.1 и 7.2, проверяются все вводные и секционные выключатели, выключатели цепей аварийного освещения, пожарной сигнализации и автоматического пожаротушения, а также не менее 2% выключателей распределительных и групповых сетей. В других электроустановках испытываются все вводные и секционные выключатели, выключатели цепей аварийного освещения, пожарной сигнализации и автоматического пожаротушения, а также не менее 1% остальных выключателей. Проверка производится в соответствии с указаниями заводов-изготовителей. При выявлении выключателей, не отвечающих установленным требованиям, дополнительно проверяется удвоенное количестве выключателей. 4. Проверка работы автоматических выключателей и контакторов при пониженном и номинальном напряжениях оперативного тока.
Значение напряжения срабатывания и количество операций при испытании автоматических выключателей и контакторов многократными включениями и отключениями приведены в табл. 1.8.35. 5. Устройства защитного отключения (УЗО), выключатели дифференциального тока (ВДТ) проверяются в соответствии с указаниями завода-изготовителя. 6. Проверка релейной аппаратуры. Проверка реле защиты, управления, автоматики и сигнализации и других устройств производится в соответствии с действующими инструкциями. Пределы срабатывания реле на рабочих уставках должны соответствовать расчетным данным. 7. Проверка правильности функционирования полностью собранных схем при различных значениях оперативного тока. Все элементы схем должны надежно функционировать в предусмотренной проектом последовательности при значениях оперативного тока, приведенных в табл. 1.8.36. Таблица 1.8.34 Допустимые значения сопротивления изоляции
Испытуемый элемент | Напряжение мегаомметра, В | Наименьшее допустимое значение сопротивления изоляции, МОм |
1. Шины постоянного тока на щитах управления и в распределительных устройствах (при отсоединенных цепях) | 500-1000 | 10 |
2. Вторичные цепи каждого присоединения и цепи питания приводов выключателей и разъединителей 1) | 500-1000 | 1 |
3. Цепи управления, защиты, автоматики и измерений, а также цепи возбуждения машин постоянного тока, присоединенные к силовым цепям | 500-1000 | 1 |
4. Вторичные цепи и элементы при питании от отдельного источника или через разделительный трансформатор, рассчитанные на рабочее напряжение 60 В и ниже 2) | 500 | 0,5 |
5. Электропроводки, в том числе осветительные сети 3) | 1000 | 0,5 |
6. Распределительные устройства 4) , щиты и токопроводы (шинопроводы) | 500-1000 | 0,5 |
Таблица 1.8.35 Испытание контакторов и автоматических выключателей многократными включениями и отключениями
Операция | Напряжение оперативного тока, % номинального | Количество операций |
Включение | 90 | 5 |
Отключение | 80 | 5 |
Испытуемый объект | Напряжение оперативного тока, % номинального | Примечание |
Схемы защиты и сигнализации в установках напряжением выше 1кВ | 80, 100 | - |
Схемы управления в установках напряжением выше 1 кВ: испытание на включение | 90, 100 | - |
то же, но на отключение | 80, 100 | - |
Релейно-контакторные схемы в установках напряжением до 1кВ | 90, 100 | Для простых схем кнопка - магнитный пускатель проверка работы на пониженном напряжении не производится. |
Бесконтактные схемы на логических элементах | 85, 100, 110 | Изменение напряжения производится на входе в блок питания. |
Электрические грузоподъемные механизмы
7.3.73. Электрооборудование кранов, талей, лифтов и т. п., находящихся во взрывоопасных зонах любого класса и участвующих в технологическом процессе, должно удовлетворять требованиям табл. 7.3.10 и 7.3.11 для передвижных установок. 7.3.74. Электрооборудование кранов, талей, лифтов и т. п., находящихся во взрывоопасных зонах и не связанных непосредственно с технологическим процессом (например, монтажные краны и тали), должно иметь: а) во взрывоопасных зонах классов ВI и В-II - любой уровень взрывозащиты для соответствующих категорий и групп взрывоопасных смесей; б) во взрывоопасных зонах классов В-Iа и В-II -любой уровень взрывозащиты для соответствующих категорий и групп взрывоопасных смесей; в) во взрывоопасных зонах классов В-Iа и В-Iб - степень защиты оболочки не менее IРЗЗ; г) во взрывоопасных зонах классов В-IIа и В-Iг - степень защиты оболочки не менее IP44. Применение указанного электрооборудования допускается только при отсутствии взрывоопасных концентраций во время работы крана. 7.3.75. Токоподводы к кранам, талям и т. п. во взрывоопасных зонах любого класса должны выполняться переносным гибким кабелем с медными жилами, с резиновой изоляцией, в резиновой маслобензиностойкой оболочке, не распространяющей горение.
7.4.26. Степень защиты оболочки электрооборудования, применяемого для кранов, талей и аналогичных им механизмов, должна соответствовать табл. 7.4.1 - 7.4.3. 7.4.27. Токоподвод подъемных механизмов (кранов, талей и т. п.) в пожароопасных зонах классов П-I и П-II должен выполняться переносным гибким кабелем с медными жилами, с резиновой изоляцией, в оболочке, стойкой к окружающей среде. В пожароопасных зонах классов П-IIа и П-III допускается применение троллеев и троллейных шинопроводов, но они не должны быть расположены над местами размещения горючих веществ.
Электрические измерения
5.6.24. Емкости фаз конденсаторной установки должны контролироваться стационарными устройствами измерения тока в каждой фазе. Для конденсаторных установок мощностью до 400 квар допускается измерение тока только в одной фазе. 5.6.25. Реактивная энергия, выданная в сеть конденсаторами, должна учитываться согласно требованиям гл. 1.5.
Электрические машины
7.3.66. Во взрывоопасных зонах любого класса могут применяться электрические машины с классом напряжения до 10 кВ при условии, что уровень их взрывозащиты или степень защиты оболочки по ГОСТ 17494-87 соответствуют табл. 7.3.10 или являются более высокими. Если отдельные части машины имеют различные уровни взрывозащиты или степени защиты оболочек, то все они должны быть не ниже указанных в табл. 7.3.10. 7.3.67. Для механизмов, установленных во взрывоопасных зонах классов В-I, В-Iа и В-II, допускается применение электродвигателей без средств взрывозащиты при следующих условиях: а) электродвигатели должны устанавливаться вне взрывоопасных зон. Помещение, в котором устанавливаются электродвигатели, должно отделяться от взрывоопасной зоны несгораемой стеной без проемов и несгораемым перекрытием (покрытием) с пределом огнестойкости не менее 0,75 ч, иметь эвакуационный выход и быть обеспеченным вентиляцией с пятикратным обменом воздуха в час; б) привод механизма должен осуществляться при помощи вала, пропущенного через стену, с устройством в ней сальникового уплотнения.
Электрооборудование переносного электрифицированного инструмента в пожароопасных зонах любого класса должно быть со степенью защиты оболочки не менее IP44; допускается степень защиты оболочки IP33 при условии выполнения специальных технологических требований к ремонту оборудования в пожароопасных зонах. 7.4.18. Электрические машины с частями, нормально искрящими по условиям работы (например, электродвигатели с контактными кольцами), должны располагаться на расстоянии не менее 1 м от мест размещения горючих веществ или отделяться от них несгораемым экраном. 7.4.19. Для механизмов, установленных в пожароопасных зонах, допускается применение электродвигателей с меньшей степенью защиты оболочки, чем указано в табл. 7.4.1, при следующих условиях: электродвигатели должны устанавливаться вне пожароопасных зон; привод механизма должен осуществляться при помощи вала, пропущенного через стену, с устройством в ней сальникового уплотнения.
Электрические светильники
7.3.76. Во взрывоопасных зонах могут применяться электрические светильники при условии, что уровень их взрывозащиты или степень защиты соответствуют табл. 7.3.12 или являются более высокими. 7.3.77. В помещениях с взрывоопасными зонами любого класса со средой, для которой не имеется светильников необходимого уровня взрывозащиты, допускается выполнять освещение светильниками общего назначения (без средств взрывозащиты) одним из следующих способов: а) через неоткрывающиеся окна без фрамуг и форточек, снаружи здания, причем при одинарном остеклении окон светильники должны иметь защитные стекла или стеклянные кожухи; б) через специально устроенные в стене ниши с двойным остеклением и вентиляцией ниш с естественным побуждением наружным воздухом; в) через фонари специального типа со светильниками, установленными в потолке с двойным остеклением и вентиляцией фонарей с естественным побуждением наружным воздухом; г) в коробах, продуваемых под избыточным давлением чистым воздухом. В местах, где возможны поломки стекол, для застекления коробов следует применять небьющееся стекло; д) с помощью осветительных устройств с щелевыми световодами.
7.4.32. В пожароопасных зонах должны применяться светильники, имеющие степень защиты не менее указанной в табл. 7.4.3. Таблица 7.4.3 Минимальные допустимые степени защиты светильников в зависимости от класса пожароопасной зоны *
Источники света, устанавливаемые в светильниках | Степень защиты светильников для пажароопасной зоны класса | |||
П-I | П-II | П-IIа, а также П-II при наличии местных нижних отсосов и общеобменной вентиляции | П-III | |
Лампы накаливания | IP53 | IP53 | 2’3 | 2’3 |
Лампы ДРЛ | IP53 | IP53 | IP23 | IP23 |
Люминесцентные лампы | 5’3 | 5’3 | IP23 | IP23 |
Электрическое освещение
Глава 6.1. Общая часть Глава 6.2. Внутреннее освещение Глава 6.3. Наружное освещение Глава 6.4. Световая реклама, знаки и иллюминация Глава 6.5. Управление освещением Глава 6.6. Осветительные приборы и электроустановочные устройства
Освещение безопасности должно выполняться в помещениях сцены (эстрады), касс, администратора, гардероба, постов охраны, пожарного поста, технических аппаратных, здравпунктов, ТП, КТП, ГРЩ, телефонной станции и в помещениях для животных в цирках. Эвакуационное освещение должно быть предусмотрено во всех помещениях, где возможно пребывание более 50 чел., а также на всех лестницах, проходах и других путях эвакуации. 7.2.34. Световые указатели должны быть размещены над дверями по путям эвакуации из зрительного зала, со сцены (эстрады, манежа) и из других помещений в направлении выхода из здания и иметь окраску в соответствии с НПБ 160-97 "Цвета сигнальные. Знаки пожарной безопасности. Виды, размеры, общие технические требования". Световые указатели должны присоединяться к источнику питания освещения безопасности или эвакуационного освещения или автоматически на него переключаться при исчезновении напряжения на питающих их основных источниках. Световые указатели должны быть включены в течение всего времени пребывания зрителей в здании. 7.2.35. Управление освещением безопасности и эвакуационным освещением должно предусматриваться из помещения пожарного поста, из щитовой аварийного освещения или с ГРЩ (ВРУ). 7.2.36. Для освещения безопасности и эвакуационного освещения, включаемого или переключаемого на питание от аккумуляторной установки, должны применяться лампы накаливания. Люминесцентные лампы могут применяться при питании светильников от аккумуляторной установки через преобразователи постоянного тока в переменный. 7.2.37. Освещение пюпитров оркестрантов в оркестровой яме должно производиться светильниками, присоединенными к штепсельным розеткам. 7.2.38. В зрелищных предприятиях должна предусматриваться возможность присоединения иллюминационных и рекламных установок.
Электродвигатели и их коммутационные аппараты
Область применения Общие требования Выбор электродвигателей Установка электродвигателей Коммутационные аппараты Защита асинхронных и синхронных электродвигателей напряжением выше 1 кВ Защита электродвигателей напряжением до 1 кВ (асинхронных, синхронных и постоянного тока)
Электродвигатели, коммутационные аппараты
7.7.32. Коммутационные аппараты электродвигателей выше 1 кВ должны размещаться в металлических шкафах. 7.7.33. Коммутационные устройства электродвигателей выше 1 кВ должны иметь блокировку, не допускающую: отключения разъединителя под нагрузкой; включения разъединителя при включенном пусковом аппарате; открывания шкафа при включенном разъединителе; включения разъединителя при открытом шкафе. 7.7.34. Перед выключателями и предохранителями выше 1 кВ должны быть установлены разъединители. При наличии разъемных контактных соединений, посредством которых кабель, питающий установку электроэнергией, присоединяется к ВЛ, установка дополнительного разъединителя необязательна. В случае применения накидных зажимов необходима установка дополнительного разъединителя перед трансформатором со стороны подачи электроэнергии, а также перед устройством, имеющим трансформатор напряжения. 7.7.35. Пуск электродвигателя, присоединенного к отдельному трансформатору, допускается производить при помощи пускового устройства, установленного на стороне высшего напряжения трансформатора, без установки коммутационных аппаратов между электродвигателем и трансформатором. 7.7.36. На коммутационных устройствах электродвигателей выше 1 кВ установка вольтметров и амперметров обязательна. При установке на одном агрегате нескольких электродвигателей выше 1 кВ предусматривается один вольтметр на всю группу электродвигателей. 7.7.37. Сечение кабеля, соединяющего коммутационный аппарат с электродвигателем, выбирается по допустимому длительному току; проверка его по току КЗ не требуется. 7.7.38. Для электродвигателей в момент включения допускается такое значение потери напряжения, которое обеспечивает требуемый пусковой момент, если при этом не нарушается режим работы других электроприемников. Допускается прямой пуск электродвигателей мощностью, не превышающей 90% мощности трансформатора.
Электродвигатели переменного тока
Электродвигатели переменного тока напряжением до 1 кВ испытываются по пп.2, 4б, 5, 6. Электродвигатели переменного тока напряжением выше 1 кВ испытываются по пп.1-6. 1. Определение возможности включения без сушки электродвигателей напряжением выше 1 кВ. Электродвигатели переменного тока включаются без сушки, если значение сопротивления изоляции и коэффициента абсорбции не ниже указанных в табл.1.8.9. 2. Измерение сопротивления изоляции. Допустимые значения сопротивления изоляции электродвигателей напряжением выше 1 кВ должны соответствовать нормам, приведенным в табл.1.8.10. У синхронных электродвигателей и элекродвигателей с фазным ротором на напряжение 3 кВ и выше или мощностью более 1 МВт производится измерение сопротивления изоляции ротора мегаомметром на напряжение 1000 В. Измеренное значение сопротивления должно быть не ниже 0,2 МОм. 3. Испытание повышенным напряжением промышленной частоты. Производится на полностью собранном электродвигателе. Испытание обмотки статора производится для каждой фазы в отдельности относительно корпуса при двух других, соединенных с корпусом. У двигателей, не имеющих выводов каждой фазы в отдельности, допускается производить испытание всей обмотки относительно корпуса. Значения испытательных напряжений приведены в табл.1.8.11. Продолжительность приложения испытательного напряжения 1 мин. 4. Измерение сопротивления постоянному току. Измерение производится при практически холодном состоянии машины. а) Обмотки статора и ротора * Измерение производится у электродвигателей на напряжение 3 кВ и выше. Приведенные к одинаковой температуре измеренные значения сопротивлений различных фаз обмоток, а также обмотки возбуждения синхронных двигателей не должны отличаться друг от друга и от исходных данных более чем на 2%. б) Реостаты и пускорегулировочные резисторы Для реостатов и пусковых резисторов, установленных на электродвигателях напряжением 3 кВ и выше, сопротивление измеряется на всех ответвлениях. Для электродвигателей напряжением ниже 3 кВ измеряется общее сопротивление реостатов и пусковых резисторов и проверяется целостность отпаек.
Значения сопротивления не должны отличаться от исходных значений более чем на 10%. 5. Проверка работы электродвигателя на холостом ходу или с ненагруженным механизмом. Продолжительность проверки не менее 1 часа. 6. Проверка работы электродвигателя под нагрузкой. Производится при нагрузке, обеспечиваемой технологическим оборудованием к моменту сдачи в эксплуатацию. При этом для электродвигателя с регулируемой частотой вращения определяются пределы регулирования. Проверяется тепловое и вибрационное состояние двигателя. * Сопротивление постоянному току обмотки ротора измеряется у синхронных электродвигателей и асинхронных электродвигателей с фазным ротором. Таблица 1.8.9 Допустимые значения сопротивления изоляции и коэффициента абсорбции для обмоток статора электродвигателей
Мощность, номинальное напряжение электродвигателя, вид изоляции обмоток | Критерии оценки состояния изоляции обмотки статора | |
Значение сопротивления изоляции, МОм | Значение коэффициента абсорбции R60/R15 | |
1. Мощность более 5 МВт, термореактивная и микалентная компаундированная изоляция | При температуре 10-30 ?С сопротивление изоляции не ниже 10 Мом на 1 кВ номинального линейного напряжения | Не менее 1,3 при температуре 10-30 ?С |
2. Мощность 5 МВт и ниже, напряжение выше 1 кВ, термореактивная изоляция | ||
3. Двигатели с микалентной компаундированной изоляцией, напряжение выше 1 кВ, мощностью от 1 до 5 МВт включительно, а также двигатели меньшей мощности наружной установки с такой же изоляцией напряжением выше 1 кВ | Не ниже значений, указанных в табл.1.8.10. | Не менее 1,2 |
4. Двигатели с микалентной компаундированной изоляцией, напряжение выше 1 кВ, мощностью более 1 МВт, кроме указанных в п.3 | Не ниже значений, указанных в табл.1.8.10. | - |
5. Напряжение ниже 1 кВ, все виды изоляции | Не ниже 1,0 Мом при температуре 10-30 ?С | - |
6. Обмотка ротора | 0,2 | - |
7. Термоиндикаторы с соединительными проводами, подшипники | В соответствии с указаниями заводов-изготовителей |
Температура обмотки, ?С | Сопротивление изоляции R60", МОм, при номинальном напряжении обмотки, кВ | ||
3-3,15 | 6-6,3 | 10-10,5 | |
10 | 30 | 60 | 100 |
20 | 20 | 40 | 70 |
30 | 15 | 30 | 50 |
40 | 10 | 20 | 35 |
50 | 7 | 15 | 25 |
60 | 5 | 10 | 17 |
75 | 3 | 6 | 10 |
Испытуемый элемент | Мощность электродвигателя, кВт | Номинальное напряжение электродвигателя, кВ | Испытательное напряжение, кВ |
1. Обмотка статора | Менее 1,0 | Ниже 0,1 | 0,8(2Uном+0,5) |
От 1,0 и до 1000 | Ниже 0,1 | 0,8(2Uном+1) | |
Выше 0,1 | 0,8(2Uном+1), но не менее 1,2 | ||
От 1000 и более | До 3,3 включительно | 0,8(2Uном+1) | |
От 1000 и более | Свыше 3,3 до 6,6 включительно | 0,8·2,5Uном | |
От 1000 и более | Свыше 6,6 | 0,8(2Uном+3) | |
2. Обмотка ротора синхронных электродвигателей, предназначенных для непосредственного пуска, с обмоткой возбуждения, замкнутой на резистор или источник питания. | 8-кратное Uномсистемы возбуждения, но не менее 1,2 и не более 2,8 | ||
3. Обмотка ротора электродвигателя с фазным ротором. | - | - | 1,5Uр * , но не менее 1,0 |
4. Резистор цепи гашения поля синхронных двигателей. | - | - | 2,0 |
5. Реостаты и пускорегулирующие резисторы. | - | - | 1,5Uр * , но не менее 1,0 |
Электрофильтры
1. Измерение сопротивления изоляции обмоток трансформатора агрегата питания. Сопротивление изоляции обмоток напряжением 380/220 В с подсоединенными к ним цепями должно быть не менее 1 МОм. Сопротивление изоляции обмоток высокого напряжения не должно быть ниже 50 МОм при температуре 25 ?С или не должно быть менее 70% значения, указанного в паспорте агрегата. 2. Испытание изоляции цепей 380/220 В агрегата питания. Испытание изоляции производится напряжением 2 кВ частотой 50 Гц в течение 1 мин. Элементы, работающие при напряжении 60 В и ниже, должны быть отключены. 3. Измерение сопротивления изоляции кабеля высокого напряжения. Сопротивление изоляции, измеренное мегаомметром на напряжение 2500 В, не должно быть менее 10 МОм. 4. Испытание изоляции кабеля высокого напряжения. Испытание производится напряжением 75 кВ постоянного тока в течение 30 мин. 5. Испытания трансформаторного масла. Предельно допустимые значения пробивного напряжения масла: до заливки - 40 кВ, после - 35 кВ. В масле не должно содержаться следов воды. 6. Проверка исправности заземления элементов оборудования. Производится проверка надежности крепления заземляющих проводников к заземлителю и следующим элементам оборудования: осадительным электродам, положительному полюсу агрегата питания, корпусу электрофильтра, корпусам трансформаторов и электродвигателей, основанию переключателей, каркасам панелей и щитов управления, кожухам кабеля высокого напряжения, люкам лазов, дверкам изоляторных коробок, коробкам кабельных муфт, фланцам изоляторов и другим металлическим конструкциям согласно проекту. 7. Проверка сопротивления заземляющих устройств. Сопротивление заземлителя не должно превышать 4 Ом, а сопротивление заземляющих проводников (между контуром заземления и деталью оборудования, подлежащей заземлению) - 0,1 Ом. 8. Снятие вольт-амперных характеристик. Вольт-амперные характеристики электрофильтра (зависимость тока короны полей от приложенного напряжения) снимаются на воздухе и дымовом газе согласно указаниям табл. 1.8.26.
Таблица 1.8.26 Указания по снятию характеристик электрофильтров
Испытуемый объект | Порядок снятия вольт-амперных характеристик | Требования к результатам испытаний |
1. Каждое поле на воздухе | Вольт- амперная характеристика снимается при плавном повышении напряжения с интервалами изменения токовой нагрузки 5-10% номинального значения до предпробойного уровня. Она снимается при включенных в непрерывную работу механизмах встряхивания электродов и дымососах | Пробивное напряжение на электродах должно быть не менее 40 кВ при номинальном токе короны в течение 15 мин |
2. Все поля электрофильтра на воздухе | То же | Характеристики, снятые в начале и конце 24 ч испытания, не должны отличаться друг от друга более чем на 10% |
3. Все поля электрофильтра на дымовом газе | Вольт-амперная характеристика снимается при плавном повышении напряжения до предпробойного уровня (восходящая ветвь) с интервалами изменения токовой нагрузки 5-10% номинального значения и при плавном снижении напряжения (нисходящая ветвь) с теми же интервалами токовой нагрузки. Она снимается при номинальной паровой нагрузке котла и включенных в непрерывную работу механизмах встряхивания электродов | Характеристики, снятые в начале и конце 72 ч испытания не должны отличаться друг от друга более чем на 10% |