Электротехника и электроника

         

Задание рабочей точки в транзисторном каскаде


В этом разделе рассматриваются различные способы задания рабочей точки транзисторного каскада с общим эмиттером.

Цель 1. Построение нагрузочной линии транзисторного каскада.

2. Задание рабочей точки транзисторного каскада

3. Исследование параметров рабочей точки транзистора.

4. Исследование условий для перевода транзистора в режим насыщения и отсечки.

5. Определение статического коэффициента передачи транзистора по экспериментальным данным.


Краткие сведения из теории 1. Задание тока базы с помощью одного резистора. Схема транзисторного каскада с общим эмиттером представлена на рис. 10.5. Режим, в котором работает каскад, можно определить, построив его нагрузочную линию на выходной характеристике транзистора. Данный способ позволяет описать поведение транзистора в режимах насыщения, усиления и отсечки. Режим насыщения определяется следующим условием: ток коллектора не управляется током базы:


IKH — ток коллектора насыщения, определяется сопротивлением RK в цепи коллектора и напряжением источника питания ЕК:


Этот режим характеризуется низким падением напряжения коллектор-эмиттер (порядка 0.1 В). Для перевода транзистора в этот режим необходимо в базу транзистора подать ток, больший чем ток насыщения базы Iвн:



Ток насыщения базы задается с помощью резистора Rвн с сопротивлением, равным:


где UБЗО - пороговое напряжение перехода база-эмиттер. Для кремниевых транзисторов Uвзо= 0.7 В. В режиме усиления ток коллектора меньше тока 1кн и описывается уравнением нагрузочной прямой:


Рабочая точка в статическом режиме задается током базы и напряжением на коллекторе. Она определяется точкой пересечения нагрузочной прямой и выходной характеристики транзистора. Базовый ток транзистора определяется как ток через сопротивление в цепи базы Ев (см.рис. 20.5):


Ток коллектора вычисляется по формуле:


Напряжение'коллектор-эмиттер определяется из уравнения нагрузочной прямой:


В режиме отсечки ток коллектора равен нулю и не создает на резисторе Rк падения напряжения. Следовательно, напряжение Uкэ максимально и равно напряжению источника питания Ек. Ток коллектора с учетом тепловых токов определяется из следующего выражения:



где Iкэо, IKBO - обратные токи переходов коллектор-эмиттер и коллектор- база соответственно. Коэффициент нестабильности тока коллектора (S) из-за влияния тепловых токов в схеме определяется как:


Как следует из этого выражения, при рассматриваемом способе задания тока базы коэффициент нестабильности зависит от статического коэффициента передачи, который для транзисторов одного и того же типа может сильно различаться. 2. Задание тока базы с помощью делителя напряжения. NPN-транзистор. Схема задания тока базы NPN транзистора с помощью делителя напряжения в каскаде с общим эмиттером представлена на рис. 10.6. Аналогично пункту 1, рассмотрим режимы насыщения, усиления и отсечки. Ток коллектора в режиме насыщения описывается следующим выражением:


Независимо от сопротивления резисторов R1 и R2 делителя напряжения ток насыщения базы определяется из выражения:






а напряжение Uб на базе равно:


Это же напряжение задается делителем напряжения. Зная Ек и Uб, можно определить отношение сопротивлений плеч делителя:


Суммарное сопротивление делителя обычно выбирается так, чтобы ток, протекающий через него был примерно в 10 раз меньше тока коллектора. Составив систему уравнений и решив её, можно найти сопротивления R1 и R2 плеч делителя, которые обеспечивают ток базы, необходимый для перевода транзистора в режим насыщения. Аналогичным образом каскад рассчитывается и в усилительном режиме, но с учетом следующих выражений. Ток коллектора в усилительном режиме описывается уравнением нагрузочной прямой:


где Uэ = IэRэ, Iэ - ток эмиттера.
Ток базы определяется из выражения:


Ток коллектора связан с током эмиттера следующим выражением:


и Напряжение на базе транзистора равно:


Далее рассчитываются сопротивления R1 и R2 делителя напряжения. Суммарное сопротивление делителя должно обеспечивать больший по сравнению с током базы ток делителя (обычно ток делителя берут в 10 раз меньше тока коллектора). Рабочая точка определяется пересечением нагрузочной прямой и выходной характеристики транзистора. При известных значениях сопротивлений R1 и R2 ток базы транзистора равен:



где Uб - напряжение на базе транзистора. Если BRэ >> R2, то:


Ток эмиттера определяется по падению напряжения на сопротивлении Rэ в цепи эмиттера и вычисляется как разность потенциалов


Значение напряжения коллектор-эмиттер Uкэ вычисляется по закону Кирхгофа: Uкэ = Eк-IкRк-IэRэ.
Коэффициент нестабильности тока коллектора (S) из-за влияния тепловых токов в схеме при условии, что Uэ > UБЭО определяется как:


где


Как следует из этого выражения, при данном способе задания тока базы коэффициент нестабильности определяется элементами схемы и практически не зависит от характеристик транзистора, что улучшает стабильность рабочей точки. PNP-транзиетор. Схема задания тока базы с помощью делителя напряжения в каскаде с общим эмиттером на PNP-транзисторе представлена на рис. 10.7. Для данной схемы справедливы выражения, приведенные в предыдущем пункте для схемы с NPN-транзистором, со следующей поправкой: полярность напряжений и направления токов нужно поменять на обратные.


3. Задание тока базы с помощью дополнительного источника в цепи эмиттера. Схема задания тока базы с помощью дополнительного источника в цепи эмиттера в каскаде с общим эмиттером на NPN-тран-зисторе представлена на рис. 10.8. Ток коллектора в режиме насыщения равен:


Ток коллектора в усилительном режиме описывается уравнением нагрузочной прямой:


Напряжение на базе транзистора UB определяется из следующего выражения: UБ = IэRэ -Eэ +UБЭО
Это же напряжение равно падению напряжения на резисторе Ев: UБ=-IБ-RБ. Ток эмиттера вычисляется по падению напряжения на сопротивлении Rэ:


UБ имеет отрицательное значение.
Ток коллектора связан с током эмиттера следующим выражением: IK =Iэ-IБ=Iэ.


Значение напряжения коллектор-эмиттер вычисляется из закона Кирхгоффа для напряжений:


Коэффициент нестабильности тока коллектора (S) определяется как:


Рассматриваемая схема характеризуется таким же коэффициентом нестабильности, как и предыдущая. 4. Задание тока базы с помощью резистора в цепи база-коллектор. Схема задания тока базы с помощью резистора в цепи база-коллектор в каскаде с общим эмиттером представлена на рис. 10.9. Ток коллектора в усилительном режиме описывается уравнением:



Рабочая точка определяется точкой пересечения нагрузочной прямой и выходной характеристики транзистора. Ток базы определяется из выражения:


Как видно из выражения, ток базы зависит от напряжения коллектор-эмиттер, что делает схему менее чувствительной к разбросу значений статического коэффициента передачи устанавливаемых в нее транзисторов. Ток коллектора в схеме определяется по формуле:


Значение напряжения коллектор-эмиттер вычисляется по закону Кирхгофа для напряжений:


Коэффициент нестабильности тока коллектора (S) из-за влияния тепловых токов в схеме с резистором в цепи база-коллектор определяется как:


Как следует из выражения, коэффициент нестабильности этой схемы несколько выше, чем у схем с сопротивлением Rэ в цепи эмиттера.




Статический коэффициент передачи тока BDC определяется отношением тока коллектора к току базы:
Порядок проведения экспериментов
Эксперимент 1. Исследование параметров рабочей точки при задании тока базы с помощью одного резистора. а). Открыть файл с10_005 со схемой, изображенной на рис. 10.10. Включить схему. Записать результаты измерений для тока базы, тока коллектора, напряжения коллектор-эмиттер и напряжения база-эмиттер в раздел "Результаты экспериментов".


б). Для схемы на рис. 10.10 по формулам из раздела "Краткие сведения из теории" вычислить базовый ток, напряжение коллектор-эмиттер. Ток коллектора вычислить, используя значение тока базы, полученное в п. а) и значение Bос, посчитанное в эксперименте 1 предыдущего раздела. Результаты записать в раздел "Результаты экспериментов". Сравните их с экспериментальными данными.
в). В разделе "Результаты экспериментов" построить нагрузочную прямую по постоянному току на выходной характеристике транзистора 2N3904, полученной в эксперименте 3 предыдущего раздела. Используя значения токов и напряжений, полученные в пункте а), определить рабочую точку (Q) на нагрузочной линии и отметить её положение на графике.
г). Двойным щелчком на изображении транзистора открыть диалоговое окно выбора модели транзистора. Строка с наименованием транзистора 2N3904 будет подсвечена. Чтобы редактировать параметры модели транзистора, нажмите Edit. Измените коэффициент передачи по току (PF) до 100, потом нажмите Accept. Нажмите Accept еще раз, чтобы вернуться к схеме. Изменение коэффициента B позволяет убедиться, что замена транзисторов приводит к изменению тока коллектора. Включить схему. Записать результаты измерений для тока базы, тока коллектора и напряжения коллектор-эмиттер в раздел "Результаты экспериментов".


д). По новым значениям напряжения коллектор-эмиттер и тока коллектора определить новую рабочую точку на нагрузочной прямой, построенной в п. с). Отметить ее положение на графике в разделе "Результаты экспериментов".
е). Восстановите прежнее значение коэффициента передачи по постоянному току (PF) транзистора 2N3904 (204).
ж). Подсчитать сопротивление Rв, необходимое для перевода транзистора в режим насыщения. Подставить в схему значение сопротивления Rв, чуть меньше подсчитанного. Включить схему. Записать результаты измерений для тока базы, тока коллектора и напряжения коллектор-эмиттер в раздел "Результаты экспериментов".
з). Уменьшить значение RB на более значительную величину и снова активизировать схему. Если транзистор находится в режиме насыщения, то изменение тока коллектора очень мало даже при очень большом изменении тока базы.
Эксперимент 2. Исследование параметров рабочей точки при задании тока базы с помощью делителя напряжения (NPN-транзистор). а). Открыть файл с10_006 со схемой, изображенной на рис. 10.11. Включить схему. Записать результаты измерений для тока базы, тока коллектора, тока эмиттера, напряжения коллектор-эмиттер и напряжения на базе в раздел "Результаты экспериментов". Вычислить коэффициент передачи Bос. Результат записать в раздел "Результаты экспериментов".


б). Для схемы рис. 10.11 по формулам из раздела "Краткие сведения из теории" вычислить значение напряжения в точке UБ. Вычислить ток эмиттера и рассчитать ток коллектора по полученному значению тока эмиттера (Uвэо = 0.7В), вычислить значение напряжения коллектор-эмиттер по полученным ранее току коллектора и току эмиттера. Результаты записать в раздел "Результаты экспериментов".
в). В разделе "Результаты экспериментов*' построить нагрузочную прямую по постоянному току на выходной характеристике транзистора 2N3904 из эксперимента 3 предыдущего раздела. Используя значения токов и напряжений, полученных в пункте а), определить рабочую точку (Q) и отметить её положение на графике.


г). Двойным щелчком на изображении транзистора открыть диалоговое окно выбора модели транзистора. Строка с наименованием транзистора 2N3904 будет подсвечена. Чтобы редактиро-' вать параметры модели транзистора, нажмите Edit. Измените коэффициент передачи по тoкy (PF) до 100, потом нажмите Accept. Нажмите Accept еще раз, чтобы вернуться к схеме. Изменение коэффициента B позволяет убедиться, что замена транзисторов приводит к изменению тока коллектора. Включить схему. Записать результаты измерений для тока базы, тока коллектора и напряжения коллектор-эмиттер в раздел "Результаты экспериментов".
д). По новым значениям напряжения база-эмиттер и тока коллектора определить положение рабочей точки на нагрузочной прямой, построенной в пункте в) и отметить её положение на графике.
е). Восстановите прежнее значение коэффициента передачи по постоянному току (BF) транзистора 2N3904 (204). ж). Провести изменения параметров цепи базы, необходимые для перевода транзистора в режим насыщения. Записать результаты измерений для тока базы, тока коллектора, напряжения на базе и напряжения коллектор-эмиттер в раздел "Результаты экспериментов".
Эксперимент 3. Задание тока базы с помощью делителя напряжения (PNP-тран-зистор). а). Открыть файл с10_007 со схемой, изображенной на рис. 10.12. Включить схему. Записать результаты измерении для тока базы, тока коллектора, тока эмиттера, напряжения коллектор-эмиттер и напряжения на базе в раздел "Результаты экспериментов". Вычислить статический коэффициент передачи Bое. Результат записать в раздел "Результаты экспериментов".


б). Для схемы рис. 10.12 по формулам из раздела "Краткие сведения из теории" вычислить значение напряжения в точке UB. Вычислить ток эмиттера и рассчитать ток коллектора по полученному значению тока эмиттера (UБЭО =0.7 В), вычислить значение напряжения коллектор-эмиттер по полученным ранее току коллектора и току эмиттера. Результаты записать в раздел "Результаты экспериментов". Сравнить их с экспериментальными данными.


в). Двойным щелчком на изображении транзистора открыть диалоговое окно выбора модели транзистора. Строка с наименованием транзистора 2N3906 будет подсвечена. Чтобы редактировать параметры модели транзистора, нажмите Edit. Измените коэффициент передачи по току (PF) со 180 до 100, потом нажмите Accept. Нажмите Accept еще раз, чтобы вернуться к схеме. Изменение коэффициента B позволяет убедиться, что замена транзисторов приводит к изменению тока коллектора. Включить схему. Записать результаты измерений для тока базы, тока коллектора и напряжения коллектор-эмиттер в раздел "Результаты экспериментов".
г). Восстановите прежнее значение коэффициента передачи по постоянному току (BF) транзистора 2N3906 (180).
Эксперимент 4. Исследование параметров рабочей точки при задании тока базы с помощью дополнительного источника в цепи эмиттера.
а). Открыть файл с10_008 со схемой, изображенной на рис. 10.13. Включить схему. Записать результаты измерений для тока базы, тока коллектора, тока эмиттера, напряжения коллектор-эмиттер и напряжения на базе в раздел "Результаты экспериментов". Вычислить статический коэффициент передачи Bпс. Результат записать в раздел "Результаты экспериментов".
б). Для схемы на рис. 10.13 по формулам из раздела "Краткие сведения из теории" вычислить напряжение в точке UБ по измеренному ранее значению тока базы, рассчитать ток эмиттера и вычислить ток коллектора по величине тока эмиттера (UБЭО = 0-7 В). Вычислить значение напряжения коллектор-эмиттер по полученным значениям тока эмиттера и тока коллектора. Результаты записать в раздел "Результаты экспериментов".
в). В разделе "Результаты экспериментов" для схемы рис. 10.13 построить нагрузочную прямую на выходной характеристике транзистора 2N3904 из эксперимента 3 предыдущего раздела. По результатам, полученным в предыдущем пункте, определите рабочую точку (Q) и отметить её положение на графике.


г). Двойным щелчком на изображении транзистора открыть диалоговое окно выбора модели транзистора. Строка с наименованием транзистора 2N3904 будет подсвечена. Чтобы редактировать параметры модели транзистора, нажмите Edit. Измените коэффициент передачи по току (PF) с 200 до 100, потом нажмите Accept. Нажмите Accept еще раз, чтобы вернуться к схеме. Изменение коэффициента B позволяет убедиться, что замена транзисторов приводит к изменению тока коллектора. Включить схему. Записать результаты измерений для тока базы, тока коллектора и напряжения коллектор-эмиттер в раздел "Результаты экспериментов".


д). По новым значениям напряжения база-эмиттер и тока коллектора определить положение рабочей точки на нагрузочной прямой, построенной в пункте в), и отметить её положение на графике.
е). Восстановите прежнее значение коэффициента передачи по постоянному току (BF) транзистора 2N3904 (204).
Эксперимент 5. Исследование параметров рабочей точки при задании тока базы с помощью резистора в цепи база-коллектор. а). Открыть файл с10_009 со схемой, изображенной на рис. 10.14. Включить схему. Записать результаты измерений для тока базы, тока коллектора, тока эмиттера и напряжения коллектор-эмиттер в раздел "Результаты экспериментов". Вычислить статический коэффициент передачи BDC. Результат записать в раздел "Результаты экспериментов".
б). По формулам из раздела "Краткие сведения из теории" вычислить ток коллектора, используя значение PBDC, вычисленное ранее. Uвэо = 0.7 В. По полученному току коллектора вычислить значение напряжения коллектор-эмиттер. Результаты записать в раздел "Результаты экспериментов".
в). В разделе "Результаты экспериментов" для схемы рис. 10.14 построить нагрузочную прямую на выходной характеристике транзистора 2N3904. По результатам, полученным в предыдущем пункте, определить рабочую точку (Q) и отметить её положение на графике.
г). Двойным щелчком на изображении транзистора открыть диалоговое окно выбора модели транзистора. Строка с наименованием транзистора 2N3904 будет подсвечена. Чтобы редактировать параметры модели транзистора, нажмите Edit. Измените коэффициент передачи по току (PF) с 200 до 100, потом нажмите Accept. Нажмите Accept еще раз, чтобы вернуться к схеме. Изменение коэффициента B позволяет убедиться, что замена транзисторов приводит к изменению тока коллектора. Включить схему. Записать результаты измерении для тока базы, тока коллектора и напряжения коллектор-эмиттер в раздел "Результаты экспериментов".
д). По новым значениям напряжения коллектор-эмиттер и тока коллектора определить положение рабочей точки на нагрузочной прямой, построенной в пункте в), и отметить её положение на графике.


е). Восстановите прежнее значение коэффициента передачи по постоянному току (BF) транзистора 2N3904 (204). Результаты экспериментов Эксперимент 1. Исследование параметров рабочей точки при задании тока базы с помощью одного резистора.




в), г), д). Определение рабочей точки каскада.


Отметьте на графике положение рабочей точки до и после изменения коэффициента передачи транзистора по постоянному току.


Эксперимент 2. Исследование параметров рабочей точки при задании тока базы с помощью делителя напряжения (NPN-транзистор).




в), г), д). Определение рабочей точки каскада.


Отметьте на графике положение рабочей точки до и после изменения коэффициента передачи транзистора по постоянному току.




Эксперимент 3. Задание тока базы с помощью делителя напряжения (PNP-транзистор).




Эксперимент 4. Исследование параметров рабочей точки при задании тока базы с помощью дополнительного источника в цепи эмиттера.


в), г), д). Определение рабочей точки каскада. Отметьте на графике положение рабочей точки до и после изменения коэффициента передачи транзистора по постоянному току.




Эксперимент 5. Исследование параметров рабочей точки при задании тока базы с помощью резистора в цепи база-коллектор.


в), г), д). Определение рабочей точки каскада.


Отметьте на графике положение рабочей точки до и после изменения коэффициента передачи транзистора по постоянному току.


Вопросы
1. Как сильно отличаются расчетные и экспериментальные данные?
2. Изменяется ли положение рабочей точки при изменении статического коэффициента передачи тока?
3. Какое условие необходимо выполнить, чтобы перевести транзистор в режим отсечки?
4. На сколько различаются напряжения на коллекторе в схемах рис. 10.10 и 10.117
5. Чему равно напряжение коллектор-эмиттер в режиме насыщения?
6. Какая связь между током коллектора и током эмиттера?
7. В чем преимущество схемы со смещением в цепи базы над схемой со смещением в цепи эмиттера?
8. В чем преимущество схемы с делителем напряжения в цепи базы над схемой со смещением в цепи эмиттера?
9. Какую роль играет сопротивление Rэ в цепи эмиттера для стабильности работы схемы? В чем она заключается?
10.Какая из всех описанных выше схем обладает большей стабильностью?

Работа транзисторного каскада в режиме малого сигнала.


Цель

1. Исследование коэффициента усиления по напряжению в усилителях с общим эмиттером и общим коллектором.

2. Определение фазового сдвига сигналов в усилителях.

3. Измерение входного сопротивления усилителей.

4. Исследование влияния входного сопротивления усилителя на коэффициент усиления по напряжению.

5. Измерение выходного сопротивления усилителей.

6. Анализ влияния нагрузки усилителя на коэффициент усиления по напряжению.

7. Исследование влияния разделительного конденсатора на усиление переменного сигнала.

8. Анализ влияния сопротивления Rэ в цепи эмиттера на коэффициент усиления по напряжению.


Краткие сведения из теории Коэффициент усиления по напряжению определяется отношением амплитуд выходного синусоидального напряжения к входному:


1. Усилитель с общим эмиттером. Схема усилителя с общим эмиттером представлена нa puc. 10.16. Коэффициент усиления по напряжению усилителя с ОЭ приближенно равен отношению сопротивления в цепи коллектора rк к сопротивлению в цепи эмиттера rэ:


где Гц - сопротивление в цепи коллектора, которое определяется параллельным соединением сопротивления коллектора Rк и сопротивления нагрузки RH, (не показанном на рис. 10.15), чью роль может играть, например следующий усилительный каскад:


Гэ - дифференциальное сопротивление эмит-терного перехода, равное т., = 25мВ/1э. Для усилителя с сопротивлением Ra в цепи эмиттера коэффициент усиления равен:


Входное сопротивление усилителя по переменному току определяется как отношение амплитуд синусоидального входного напряжения UBX и входного тока iвх:


Входное сопротивление транзистора ri определяется по формуле: r,=Brэ. Входное сопротивление усилителя по переменному току гвх вычисляется как параллельное соединение сопротивлений ri R1 и R2:



Значение дифференциального выходного сопротивления схемы находится по напряжению Uxx холостого хода на выходе усилителя, которое может быть измерено как падение напряжения на сопротивлении нагрузки, превышающем 200 кОм, и по напряжению uвых, измеренному для данного сопротивления нагрузки RH, из следующего уравнения, решаемого относительно rвых:



Сопротивление RH 2 200 кОм можно считать разрывом в цепи нагрузки.
2. Усилитель с общим коллектором. Схема усилителя с общим коллектором или эмиттерного повторителя представлена на рис. 10.16. Коэффициент усиления по напряжению усилителя с ОК определяется из следующего выражения:


Как видно из выражения, коэффициент усиления каскада с общим коллектором приближенно равен 1, поскольку Гэ обычно мало по сравнению с сопротивлением Rэ. Из-за этого свойства каскад называют эмиттерным по-


вторителем. Входное сопротивление усилителя Гвх по переменному току определяется как отношение амплитуд синусоидального входного напряжения UBX и входного тока 1вх:


Входное сопротивление эмиттерного повторителя по переменному току определяется следующим выражением:


В данном случае для определения входного сопротивления каскада нужно принять во внимание сопротивление резисторов R1 и R2. С учетом сказанного получим:


Также при расчете схем необходимо учитывать сопротивление нагрузки, которая включается параллельно сопротивлению эмиттера Rэ. Из выражений для входного сопротивления видно, что эмиттерный повторитель обладает высоким входным сопротивлением по сравнению с каскадом с ОЭ. В общем случае выходное сопротивление эмиттерного повторителя в BAC+1 раз меньше сопротивления Rист источника сигнала на входе эмиттерного повторителя:


Если сопротивление Rист источника сигнала на входе эмиттерного повторителя пренебрежимо мало, то выходное сопротивление эмиттерного повторителя будет равно дифференциальному сопротивлению перехода база-эмиттер: rвых = rэ В случае, когда сопротивление Rист источника сигнала на входе очень велико (сравнимо с BACRэ), сопротивление Rэ должно быть учтено как включенное параллельно наиденному выходному сопротивлению эмиттерного повторителя. Экспериментально выходное сопротивление каскада можно определить по результатам двух измерений: измерения напряжения холостого хода Uxx (на выход каскада подключается сопротивление порядка 200 кОм и измеряется падение напряжения на нем) и измерения выходного напряжения Uвых при наличии нагрузки сопротивлением Rн. После измерений выходное сопротивление можно подсчитать по формуле:



Благодаря высокому входному и низкому выходному сопротивлениям каскад с общим коллектором очень часто используют в качестве согласующего между источником и нагрузкой.
Порядок проведения экспериментов Эксперимент 1. Исследование каскада с общим эмиттером в области малого сигнала. а). Открыть файл с10_010 со схемой, изображенной на рис. 10.17. Установочные параметры приборов также должны соответствовать изображению.


б). Включить схему. Для установившегося режима в раздел "Результаты экспериментов" записать результаты измерений амплитуд входного и выходного напряжений, разности фаз входного и выходного синусоидальных сигналов (разность фаз можно определить при помощи Воде-плоттера). По результатам измерений амплитуд входного и выходного синусоидальных напряжений, вычислить коэффициент усиления усилителя по напряжению. Результат записать в раздел "Результаты экспериментов".
в). Для схемы на рисунке определить ток эмиттера. По его значению вычислить дифференциальное сопротивление rэ эмиттерного перехода. Используя найденное значение, вычислить коэффициент усиления каскада по напряжению. Результаты записать в раздел "Результаты экспериментов".
г). Подключить резистор RD между точкой UBX и конденсатором C1, разомкнув ключ [Space]. Включить схему. Измерить амплитуды входного UBX и выходного Uвых напряжения. Вычислить новое значение коэффициента усиления по напряжению по результатам измерений. Результаты записать в раздел "Результаты экспериментов".
д). Переместить щуп канала А осциллографа в узел Us. Снова включить схему и измерить амплитуду UB входного синусоидального напряжения в точке UБ. По результатам измерения напряжения UБ и ивых вычислить коэффициент усиления по напряжению усилительного каскада. По результатам измерения амплитуд напряжения UBX и UB вычислить входной ток 1вх. По значениям Uвх И iвx вычислить входное сопротивление rвх усилителя по переменному току. Результаты записать в раздел "Результаты экспериментов".


е). По значению коэффициента усиления тока B, полученному в эксперименте 1 раздела 10.1, и величине дифференциального эмиттерного сопротивления rэ вычислить входное сопротивление транзистора г,. Вычислить значение rвх, используя значения сопротивлении R1, R2 и ri. Результаты записать в раздел "Результаты экспериментов".
ж). Замкнуть резистор RD между узлом UBX и конденсатором C1, замкнув ключ [Space]. Переместить щуп канала А осциллографа в узел UBX. Установить номинал резистора RL 2 кОм. Затем включить схему и измерить амплитуды входного и выходного синусоидального напряжения. Используя результаты измерений, вычислить новое значение коэффициента усиления по напряжению. Результаты записать в раздел "Результаты экспериментов".
з). Используя результаты измерений амплитуды выходного синусоидального напряжения в пункте б) и пункте ж), значение сопротивления нагрузки в пункте ж), вычислить выходное сопротивление усилителя. Результат записать в раздел "Результаты экспериментов". и). Установить номинал резистора RL 200 кОм. Переставить щуп канала В осциллографа в узелке и включить схему. Измерить постоянную составляющую выходного сигнала и записать результат измерения в раздел "Результаты экспериментов". к). Вернуть щуп канала В осциллографа в узел Uouт. На осциллографе установить масштаб для входа 10 мВ/дел. Убрать шунтирующий конденсатор Сз и включить схему. Измерить амплитуды входного и выходного синусоидального напряжения. По результатам измерений вычислить значение коэффициента усиления каскада с ОЭ с сопротивлением в цепи эмиттера по напряжению. Записать результаты в раздел "Результаты экспериментов". л). По величине сопротивления Гэ и значению сопротивления Rэ вычислить значение коэффициента усиления усилителя с ОЭ с сопротивлением в цепи эмиттера по напряжению.
Эксперимент 2. Исследование каскада с общим коллектором в области малого сигнала. а). Открыть файл с10_011 со схемой, изображенной на рис. 10.18. Установочные параметры приборов в схеме должны соответствовать установочным параметрам приборов на рисунке. Для удобства при проведении эксперимента оставьте увеличенным только изображение осциллографа и мультиметра. Мультиметр должен быть установлен для измерения постоянного напряжения.



б). Включить схему. Измерить постоянные составляющие напряжения в точках UB и Uэ. Вычислить постоянные составляющие напряжения в точках UB, Uэ и ток эмиттера, используя значения параметров компонентов схемы (Uвэ= 0.7 В). Результаты записать в раздел "Результаты экспериментов".
в). Закрыть увеличенное изображение мультиметра, оставив увеличенным только изображение осциллографа. Включить схему. Измерить амплитуды входного и выходного напряжения. Определить разность фаз между входным и выходным напряжением (это можно сделать при помощи Боде-плоттера). По результатам измерений вычислить коэффициент усиления по напряжению. Вычислить коэффициент усиления эмиттерного повторителя по напряжению, используя параметры схемы. Записать результаты в раздел "Результаты экспериментов".
г). Подключить резистор между точкой UBX и конденсатором С1, разомкнув ключ [Space]. Включить схему. Измерить амплитуды входного и выходного синусоидального напряжения. По результатам измерений амплитуды входного синусоидального сигнала в этом и предыдущем пунктах вычислить входной ток. По величинам iвx и UBX вычислить дифференциальное входное сопротивление Гвх. Записать результаты в раздел "Результаты экспериментов".
д). Используя значения параметров компонентов схемы, вычислить входное сопротивление каскада rвх(B = 200).
е). Закоротить резистор, замкнув ключ [Space]. Изменить номинал резистора RL до 200 кОм. Затем включить схему и записать результаты измерения выходного напряжения в раздел "Результаты экспериментов". Это напряжение приблизительно равно напряжению холостого хода, так как сопротивление 200 кОм можно считать разрывом цепи. Уменьшить значение этого сопротивления до 200 Ом и снова включить схему. Измерить амплитуду напряжения на нагрузке. Вычислить выходное сопротивление каскада по результатам измерений. Запишите значения напряжения холостого хода, напряжения на нагрузке и выходного сопротивления каскада в раздел "Результаты экспериментов". Результаты экспериментов


Эксперимент 1. Исследование каскада с общим эмиттером в области малого сигнала.






Эксперимент 2. Исследование каскада с общим коллектором в области малого сигнала.




Вопросы
1. Каково отличие практического и теоретического значений коэффициента усиления по напряжению?
2. Какова разность фаз между входным и выходным синусоидальными сигналами в усилителе с ОЭ? с ОК?
3. Как влияет входное сопротивление на коэффициент усиления по напряжению?
4. Какова связь между входным напряжением (узел Uвх) и напряжением на базе (узел UБ) при включении между ними сопротивления?
5. Каково отличие практического и теоретического значений входного сопротивления для усилителей по переменному току?
6. Каково отличие коэффициента усиления по напряжению, вычисленного в п. к), от коэффициента усиления по напряжению из п. в) эксперимента I? Объяснить ответ.
7. Какое влияние оказывает понижение сопротивления нагрузки на коэффициент усиления по напряжению?
8. Какова связь между выходным сопротивлением усилителя и сопротивлением в цепи коллектора RK?
9. Как влияет сопротивление Rэ на коэффициент усиления по напряжению усилителя?
10.Каково отличие практического и теоретического значений напряжения UБ по постоянному току?
11. Каково отличие практического и теоретического значений напряжения Uэ по постоянному току?
12.Каково отличие практического и теоретического значений коэффициента усиления по напряжению усилителя с ОК?
Почему значение коэффициента усиления по напряжению меньше единицы?
13.Каково отличие практического и теоретического значений входного сопротивления по переменному току усилителя с ОК? Велико ли это значение?
14.Велико ли значение выходного сопротивления усилителя с ОК?
15.Какова разность фаз входного и выходного синусоидальных сигналов?
16. В чем заключено главное достоинство схемы усилителя с ОК? В чем главное назначение этой схемы?

Расчет и исследование параметров рабочей точки


в транзисторных каскадах

Методические указания Транзистор характеризуется двумя семействами вольт-амперных характеристик (ВАХ): входных и выходных ВАХ. Семейство входных ВАХ представляет собой зависимость тока Iв от напряжения Uвэ при различных значениях напряжения Uкэ:

(10.1)

Семейство выходных ВАХ представляет собой зависимость тока коллектора Iк от напряжения на коллекторе Uкэ при различных значениях тока базы IБ.:

(10.2)

Существует несколько методов расчета параметров рабочей точки. Ниже изложены некоторые из них. Графоаналитический метод Этот метод основан на непосредственном использовании ВАХ транзистора, представленных в графическом виде. Рассмотрим схему транзисторного каскада с ОЭ, представленную на рис. 10.19. Для тока базы, можно записать следующие уравнения:


Решение системы в графическом виде представлено на рис. 10.20. Оно представляет собой точку пересечения кривых 1 и 2. Кривая 1 представляет собой входную ВАХ транзистора (уравнение 10.4) при условии, что напряжение Uкэ достаточно велико и его влиянием можно пренебречь. Кривая 2 является нагрузочной линией и описывается уравнением 10.3. Она отсекает на оси токов отрезок, численно равный току Ев/Rв, а на оси напряжений - отрезок, численно равный напряжению EБ. Координаты точки пересечения - ток I*в и напряжение U* вэ - являются искомыми входными током и напряжением транзистора. Для выходной цепи транзистора, т.е. для цепи коллектора, можно записать следующие уравнения:



Уравнение (10.6) описывает выходную ВАХ транзистора для найденного тока базы I*Б. На puc, 10.21 показано семейство выходных ВАХ транзистора для различных значений тока базы. Из этого семейства необходимо выделить ту ВАХ, ток базы которой наиболее близок к полученной величине 1*в. Может оказаться, что токи базы семейства ВАХ существенно отличаются от величины I*в. В этом случае необходимо выбрать две ветви ВАХ (для одной ток базы меньше, а для другой больше I*Б) и методом интерполяции построить ВАХ для заданного значения I*в. Уравнение (10.5) является уравнением нагрузочной прямой, которая показана в виде наклонной линии на. рис. 10.21. Выходная ВАХ и нагрузочная прямая пересекаются в точке С, которая является решением системы уравнений (10.5), (10.6) в графическом виде. Координаты точки С, т. е. ток I*к и напряжение U*кэ, являются, соответственно, искомыми выходными током и напряжением транзистора.





Аналитический метод При использовании этого метода решение систем уравнений (10.3, 10.4) и (10.5, 10.6) требуется найти в аналитическом виде. Поскольку уравнения (10.4) и (10.6) являются нелинейными, невозможно получить аналитическое решение в явном виде. Один из способов решения таких систем заключается в линеаризации нелинейных уравнений. На рис. 10.22 показана входная ВАХ транзистора (кривая 1). Предлагается аппроксимировать её прямой линией (прямая 2). Уравнение для такой аппроксимации имеет вид: Uкэ=UБзо+rвхIБ (10.7) где UБЭО - пороговое напряжение входной цепи, rBX - дифференциальное входное сопротивление транзистора для рабочей области его входной характеристики. В ряде случаев в полученном выражении (10.7) первое слагаемое значительно превышает второе. Поэтому с достаточной для практики точностью это выражение можно упростить: UБЭ=UБЭО. (10.8) На рис. 10.22 такое приближение отражается прямой 3.


На рис. 10.23 показана выходная ВАХ транзистора (кривая 1). Предлагается аппроксимировать эту ВАХ прямой линией. Уравнение для такой аппроксимации имеет вид:
(10.9)
где Р - статический коэффициент передачи тока в схеме ОЭ, IKO тепловой ток коллектора, Rвых - дифференциальное выходное сопротивление.


В выражении (10.9) первое слагаемое показывает, что ток коллектора пропорционален току базы. Второе слагаемое представляет собой обратный ток коллектора, который существует даже при 1в=0. Слагаемое Uкэ/Квых характеризует наклон ВАХ. В большинстве случаев в полученном выражении (10.9) первое слагаемое значительно превышает второе и третье. Поэтому с достаточной для практики точностью это выражение можно упростить:
(10.10)
Последнее выражение позволяет явно выразить ток эмиттера через ток базы:
(10.11)
Выражения (10.8), (10.10) являются удобными аппроксимациями нелинейных ВАХ транзистора, которые можно использовать для решения конкретных задач. Рассмотрим схему, изображенную на рис. 10.26. Ранее эта схема была рассчитана графоаналитическим способом. Используя выражение (10.7), можно определить ток базы в виде:
(10.12)
С помощью выражения (10.10) можно найти напряжение на коллекторе транзистора:
(10.13)
Метод эквивалентных схем. Этот метод основан на замене транзистора его эквивалентной схемой (другое название -схема замещения). Для получения эквивалентной схемы можно воспользоваться аналитическими выражениями для входной и выходной ВАХ транзистора. Линеаризованная входная ВАХ транзистора описывается выражением (10.7). В соответствии с этим выражением входная цепь транзистора представляется последовательно соединенными источником напряжения Uвэо и сопротивлением rвх (рис. 10.24). Линеаризованная выходная характеристика транзистора описывается выражением (10.9). Согласно этому выражению эквивалентная схема (рис. 10.24) выходной цепи транзистора представляется параллельно соединенными источниками тока BIБ и Iко и сопротивлением rвых. На рис. 10.24 представлена эквивалентная схема транзистора, составленная с учетом вышесказанного. Она пригодна для расчета как постоянных, так и переменных составляющих токов и напряжений. Однако для каждой из этих составляющих целесообразно представить эквивалентную схему в упрощенном виде. Расчет переменных составляющих будет рассмотрен в следующем разделе. Для постоянных составляющих, как было указано выше, можно использовать упрощенное выражение (10.10). В соответствии с этим выражением эквивалентная схема транзистора существенно упрощается (рис. 10.25}. Для расчета постоянных составляющих транзистор следует заменять его упрощенной схемой (рис. 10.25). Если принять во внимание выражение (10.8), схема еще более упростится -rБХ можно будет исключить. В условиях задач характеристики транзисторов могут быть представлены как в графическом виде, так и в линеаризованном. При решении задач в первом случае используется графоаналитический метод, во втором - аналитический метод или метод эквивалентных схем. Используются следующие параметры транзистора: UБЭО ~ пороговое напряжение входной цепи, BDC - статический коэффициент передачи тока в схеме с общим эмиттером, rБХ - дифференциальное входное сопротивление транзистора. Поскольку каждый из режимов работы транзистора характеризуется своими параметрами и имеет свою эквивалентную схему, то для расчета электронных схем необходимо, прежде всего, выяснить, в каком режиме работает транзистор. Существует три режима работы транзистора: усилительный режим, режим насыщения'и режим отсечки. Они описываются следующими выражениями: !• UBX < U1 - режим отсечки, 2. U1 < UBX < U2 - усилительный режим, 3. UBX >U2 - режим насыщения, где U1 - напряжение Uвэ, при котором транзистор переходит в усилительный режим, U2 - напряжение UБЭ, при котором транзистор переходит в режим насыщения. В рассматриваемых задачах транзистор работает в усилительном режиме. Эквивалентная схема транзистора в усилительном режиме приведена на. рис. 10.25.





Рассмотрим границы существования усилительного режима работы транзистора в схеме, представленной на рис. 10.26а. На рис. 10.266 для этой схемы показано построение графика зависимости выходного напряжения Пвых от входного напряжения UBX-Пока входное напряжение UBX остается меньше порогового напряжения Usao, транзистор находится в режиме отсечки. Эмиттер-ньш переход транзистора закрыт, ток базы 1в и ток коллектора 1ц равны нулю (в цепи кол-


лектора и в цепи базы текут тепловые токи, значения которых пренебрежимо малы). На резисторе RK отсутствует падение напряжения, выходное напряжение Uвыx равно напряжению источника питания Ек. Как только возрастающее входное напряжение превысит величину UБЭО транзистор переходит в усилительный режим работы. Следовательно, нижняя граница существования усилительного режима определяется просто: U,=UБЭО. (10.14) Работа схемы в усилительном режиме описывается следующими выражениями:


Ток коллектора не может превысить величину тока насыщения: Iкн=Eк/Rк (10.18) При этом насыщающий ток базы определяется выражением:
(10.19)
Эта величина тока определяет верхнюю границу существования усилительного режима работы транзистора: U2=IБНRБUБЭО. (10.20) При дальнейшем увеличении входного напряжения наступает режим насыщения. В этом режиме ток базы продолжает возрастать, а ток коллектора и выходное напряжение не изменяются. Для построения графической зависимости выходного напряжения от входного (см. нижнюю диаграмму на рис. 10.26) достаточно определить граничные значения входных напряжений U1, U2 и соответствующие этим значениям величины выходного напряжения. После этого левее границы U1 и правее границы U2 провести горизонтальные линии (линия отсечки и линия насыщения), а сами граничные точки соединить наклонной линией (линия усилительного режима). После теоретического расчета схемы усилителя Вам предлагается проверить его правильность с помощью программы Electronics Workbench.
При проверке следует помнить, что длярасчета использовались упрощенные эквивалентные схемы, в которых реальный транзистор заменен его моделью. В условиях задач также заданы идеализированные характеристики транзистора и линеаризованные зависимости. Поэтому не следует ожидать 100% совпадения с правильным ответом. т. к. в представленных задачах модель транзистора реальна, хотя и несколько идеализирована для некоторых задач. В связи с вышесказанным, при моделировании задач могут возникать определенные проблемы. В условиях задач заданы линеаризованные зависимости выходных величин от входных. В реальности же дело обстоит несколько иначе (см, рис. 10.27). Рассмотрим аналитический метод решения задач на примере схемы рис. 10.28. Дано: Ек= 6 V, 1=2.5 mA, R=2 к0м, Ев = 6 к0м, Uвэо=1В, BDC=20, RK = 400 Ом. Найти: Напряжение Uкэ. Преобразуем источник тока с сопротивлением R в источник напряжения с внутренним сопротивлением R по закону Ома. В результате преобразования получим схему, изображенную на рис. 10.29. Заменяя транзистор эквивалентной схемой рис. 10.25, получим:



Отсюда находим ток базы Iв:


Напряжение определяется по второму закону Кирхгофа:


где ток коллектора


Поэтому:




1 -линеаризованная зависимость выходного напряжения от входного, 2 —реальная зависимость выходного напряжения от входного.


Задачи для самостоятельного исследования Задание рабочей точки, транзисторного каскада На. рис. 10.30 и рис. 10.31 представлены схемы транзисторного каскада с общим эмиттером. Нужно определить один из параметров транзистора: коэффициент передачи тока базы BDC2 или входное сопротивление Rвх3- В каждом варианте дана зависимость выходного сигнала от входного воздействия. На вход подается либо входное напряжение UBX (Uin), либо входной ток IBX (Iin) Выходным сигналом может быть: напряжение нагрузки UH, ток нагрузки Iн, ток коллектора 1к, ток источника питания In. Все приведенные характеристики охватывают три режима работы транзистора: режим отсечки, усилительный режим и режим насыщения. В этом режиме справедливы выражения (10.13), (10.14), (10.15), полученные выше. Там же показано, что входная цепь заменяется последовательной цепочкой UБЭО - RBX (см. рис. 10.24, 10.25). Схемы, поясняющие условия задач, в которых входное сопротивление транзистора пренебрежимо мало




В дальнейшем в тексте задач параметр BDC обозначается просто р. В этом задании рассчитываются постоянные составляющие токов и напряжений. Динамическое входное сопротивление, определяемое изменением разности потенциалов на базе транзистора, равно нулю, поэтому полное входное сопротивление определяется омическим сопротивлением базы и может быть смоделировано с помощью резистора RBX последовательно подключенного к базе транзистора.
Рекомендации по выполнению работы:
1. Создайте при помощи Electronics Workbench одну из схем, изображенных на рис. 20.30 и 10.31, согласно условию задачи. Схемы представляют два случая: входное сопротивление транзистора пренебрежимо мало и входное сопротивление транзистора сопоставимо по величине с сопротивлением резисторов на входе схемы. Подставьте в схему заданные и рассчитанные значения номиналов элементов. Выберите указанный в условии задачи тип транзистора.
В библиотеках версии 4.0 Electronics Workbench нет транзисторов, типы которых указаны в условиях задач, поэтому, чтобы внести их в библиотеку, проделайте следующее: С дискеты, прилагающейся к книге, скопируйте файл ех10_1.т05 в подкаталог Models директории, в которой установлен Electronics Workbench 4.0. После этого имя файла библиотеки будет появляться в окне Models при выборе типа транзистора. В этой библиотеке вы найдете нужные транзисторы. 1.1. Для редактирования характеристик транзистора откройте окно свойств транзистора. Это можно проделать, дважды щелкнув на его изображении, или выбрав пункт Component Properties из меню Circuit. В открывшемся окне будет подсвечен транзистор, установленный в схеме. Для редактирования характеристик нажмите кнопку Edit. Статический коэффициент передачи тока устанавливается в строке Forward current gain coefficient (BF), пороговое напряжение Uвэо устанавливается в строке В-Е junction potential (0Е). Затем нажмите Accept для сохранения установленных параметров и Accept для возврата к схеме. 1.2. Для моделирования входного сопротивления транзистора используется резистор, последовательно подключенный к его базе. 1.3. Значком " отмечены данные, не использующиеся для расчетов, но нужные для моделирования задачи. 2. Включите схему. Подключите приборы. 'Подсчитайте статический коэффициент передачи транзистора. Сравните с расчетным значением.
Задачи
Задача 10.1.1. Дано:



Транзисторы ZTX327, Q2N2222A, 2N2923. Найти: р.


Задача 10.1.2. Дано:


Транзистор 2N3393. Найти: B.


Задача 10.1.3. Дано:


Транзисторы ZTX327, Q2N2222A. Найти: Rвх.


Задача 10.1.4. Дано:


Транзисторы ZTX327, Т502. Найти: B.


Задача 10.1.5. Дано:


Транзисторы ZTX327, Q2N2222A. Т502. Найти:B.


Задача 10.1.6. Дано:


Транзистор Q2N2222A. Найти: Rвх.


Задача 10.1.7. Дано:


Транзисторы Q2N2222A, 2N3393. Найти:B.


Задача 10.1.8. Дано:


Транзисторы 2N3393 Найти: B.


Расчет транзисторного каскада в режиме малого сигнала


Методические указания В этой части рассматривается принцип расчета усилителя с общим эмиттером (ОЭ) в области малого сигнала. Целью расчета является нахождение постоянных и переменных составляющих токов и напряжений.

Расчет постоянных составляющих позволяет найти параметры рабочей точки транзисторного каскада (статический режим). Расчет переменных составляющих -усилительные свойства каскада в этой точке. При расчете каскада транзистор заменяют его упрощенной эквивалентной схемой, причем для расчета постоянных и переменных составляющих используются разные схемы замещения. Эквивалентная схема для расчета каскада на постоянном токе приведена на puc.l0.32a, а на переменном - на рис.10.326. Эквивалентные схемы замещения транзистора при расчете транзисторного каскада: а) для расчета постоянных составляющих токов и напряжении: б) длярасчета переменных составляющих токов и напряжений


С помощью эквивалентной схемы, показанной на рис. 10.32а, легко найти постоянные составляющие тока базы 1вп, тока коллектора 1кп и напряжения на коллекторе Uкп Они определяются следующими выражениями:

(10.21)

Iкп=B Iвп, (10.22) Uкп=Ек-Iкп-Rк. (10.23) Схема на рис. 10.326 позволяет определить амплитуды переменных составляющих тока базы IБ-М. тока коллектора Iк-м и напряжения на коллекторе. При известном значении амплитуды напряжения генератора Егм амплитуды токов и напряжений можно определить с помощью следующих выражений (значок -м означает амплитуду переменной величины): IБ-м=Егм/Rвх, (10.24) Iк-м=BIв-м. (10.25) Uк-м=Iк-м-Rэкв- (10.26)

Выходное напряжение усилителя является переменной составляющей напряжения на коллекторе, поэтому оно также определяется выражением (10.26). Полученные выражения позволяют определить коэффициент усиления по напряжению К как отношение амплитуды выходного напряжения ко входному:

(10.27)

Мгновенные значения токов и напряжений являются суммой постоянных и переменных составляющих. Соответствующие осциллограммы представлены на рис. 10.33. Осциллограммы переменных составляющих тока базы IБ и тока коллектора Iк имеют одинаковую форму, т. к. соответствующие мгновенные значения пропорциональны:

(10.28)

Максимальное значение тока коллектора не может быть больше тока насыщения:

(10.29)

Этому току соответствует насыщающий ток базы:

(10.30)

Мгновенное значение напряжения на коллекторе определяется выражением:

(10.31)

Осциллограммы, показанные ни рис. 10.33, получены для режима Uкn = Ек/2. В этом случае можно получить максимальную величину неискаженного выходного напряжения, максимальное значение амплитуды которого равно половине напряжения источника питания Ек. На рис. 20.34 показаны осциллограммы для двух случаев: Uкп>Ек/2 и Uкп < Ек/2. В обоих случаях величина входного сигнала (напряжение генератора Ег) одинакова. Различие состоит в уровне постоянной составляющей напряжения на коллекторе, которое определяется уровнем базового смещения. При Uкп>Ек/2Iвп = IB-M- В результате постоянные составляющие токов базы и коллектора минимальны, а постоянная составляющая напряжения на коллекторе максимальна. При Uкп<Ек/2 Iвп = IБП - IB-M- В результате постоянные составляющие токов базы и коллектора максимальны, а постоянная составляющая напряжения на коллекторе минимальна. Переменная составляющая тока базы в обоих режимах одинакова, поэтому одинаковы и переменные составляющие тока коллектора. То же самое можно сказать и о переменных составляющих напряжения на коллекторе, следовательно, одинаковы и выходные напряжения для обоих режимов. Рассмотренные осциллограммы (рис. 10.33 и 10.34) соответствуют линейному режиму работы усилителя. При неудачном выборе амплитуды входного сигнала и величины базового смещения возникают искажения. Осциллограммы для этого случая показаны на рис. 10.35. Видно, что осциллограммы переменных составляющих тока коллектора и напряжения на коллекторе (т. е. выходного напряжения) имеют несинусоидальные формы. Для устранения искажений в данном случае, например, можно уменьшить амплитуду входного сигнала.

Осциллограммы работы усилителя в режиме малого сигнала при Uкn = Ек/2



Осциллограммы работы усилителя в режиме малого сигнала для двух случаев:


Для расчета усилителя с общим эмиттером в области малого сигнала Вам предлагается несколько типов заданий: • Задание 10.2 - режим по постоянному току задается с помощью делителя напряжения; • Задание 10.3 - режим по постоянному току задается с помощью одного резистора; • Задание 10.4 - режим по постоянному току уже задан, нужно рассчитать только переменные составляющие токов и напряжений в схеме. В задачах нужно найти либо неизвестные характеристики транзистора усилителя, например статический коэффициент передачи тока, входное сопротивление, либо значения входных и выходных сигналов усилителя (напряжение базового смещения, амплитуду входного переменного сигнала, амплитуды токов нагрузки, коллектора, выходного напряжения). В некоторых заданиях предлагается найти номинальные значения'элементов схемы, например величину сопротивления в цепи базы, коллектора или нагрузки. Перед каждым заданием даются краткие методические указания к решению задач и моделированию схем.
Осциллограммы работы усилителя в режиме искажений


Правильность теоретического расчета схемы усилителя можно проверить с помощью Electronics Workbench®. Для проверки расчета Вам предлагается уже собранная схема, в которой нужно исправить значения номиналов только рассчитанных элементов схемы (изначально они неправильны). С помощью приборов можно убедиться в правильности (или ошибочности) расчета.
При проверке следует помнить, что для расчета использовались упрощенные эквивалентные схемы, в которых реальный транзистор заменен его моделью. В условиях задач также заданы идеализированные характеристики. Поэтому не следует ожидать 100% совпадения с правильным ответом, т. к. в представленных задачах транзистор реальный, хотя и несколько идеализирован для некоторых задач. В связи с вышесказанным, при моделировании некоторых задач могут возникать определенные проблемы. Для задач по расчету каскада в режиме малого сигнала основные проблемы связаны с тем, что у реального транзистора входная характеристика транзистора нелинейна. Это хорошо видно из графика входной ВАХ транзистора (рис. 10.36). Нелинейность входной характеристики приводит к искажению выходного сигнала и уменьшению коэффициента усиления. Рассмотрим этот эффект подробнее. В режиме усиления изменение входного сигнала происходит в окрестности рабочей точки (точка А на рисунке). Если взять достаточно большую окрестность рабочей точки





(на практике более 10 мВ), то из- за нелинейности входной характеристики изменение величины дифференциального входного сопротивления, а следовательно, и переменной составляющей тока базы, будет носить нелинейный характер. Особенно влияние этого эффекта заметно в случаях, когда постоянная составляющая тока базы равна амплитуде его переменной составляющей. Это выражается в искажении синусоидальной формы напряжения на коллекторе и уменьшении коэффициента усиления усилителя по напряжению при моделировании. Чтобы все-таки проверить правильность расчета, в таких задачах в файле с заданием предусмотрены две схемы: схема с реальным транзистором и схема, где транзистор заменен его упрощенной моделью. Таким образом, если не удается проверить результаты расчета на реальной схеме, воспользуйтесь упрощенной схемой (рис. 10.37).
Пункт. Analysis Options меню Circuit позволяет, смоделировать поведение транзистора в идеальном случае без использования второй схемы (где транзистор заменен моделью). Для этого в открывшемся окне включите опцию Assume linear operation. Чтобы выйти из этого ре-жима, выключите эту опцию. Задачи для самостоятельного исследования Расчет транзисторного каскада в режиме малого сигнала Задание режима по постоянному току с помощью делителя напряжения. В задании рассматриваются схемы, представленные на рис. 10.38. Для определения постоянных составляющих токов и напряжений можно воспользоваться выражениями (10.21), (10.22), (10.23), переменных составляющих - выражениями (10.24), (10.25), (10.26). Напряжение базового смещения задается с помощью потенциометра Rcм. В данном случае потенциометр можно рассматривать как делитель напряжения, состоящий из двух последовательно соединенных резисторов R1 и R2. Согласно теореме об эквивалентном генераторе, такой делитель напряжения можно заменить эквивалентным источником э.д.с. Еэкв с внутренним сопротивлением rэкв. Значение напряжения эквивалентного источника определяется выражением:
(10.32)
Схемы для моделирования: а) с реальным транзистором, б) транзистор заменен моделью



Во всех вариантах предлагаемых заданий Rcм>>RБ, поэтому можно принять внутреннее сопротивление эквивалентного источника напряжения rэкв = О, что упрощает дальнейший расчет. Величина Rэкв, используемая в формулах (10.26), (10.27), применительно к заданию 10.2 равна значению Rк.
Рекомендации по выполнению работы: 1. Откройте файл с именем, совпадающим с номером задачи. Подставьте в схему найденные значения номиналов компонентов. 1. 1Для редактирования характеристик транзистора откройте окно свойств транзистора. Это можно проделать, дважды щелкнув мышью по его изображению, или выбрав пункт Model в меню Circuit. В открывшемся окне будет подсвечено наименование транзистора, установленного в схеме. Для редактирования характеристик нажмите кнопку Edit. Коэффициент передачи тока базы устанавливается в строке Forward current gain coefficient (BF), пороговое напряжение UБЭО в строке В - Е junction potential (0e). Затем нажмите Accept для сохранения введенных значений параметров и Accept для возврата к схеме. Параметр Rвх для каждой задачи уже установлен, поэтому его редактировать не надо. 2. Подключите приборы. Включите схему. 3. С помощью осциллографа сравните напряжение источника питания Ек с напряжением на коллекторе транзистора. Если задача решена верно, вид осциллограмм напряжений должен быть сравним с видом осциллограмм на рис. 10.34 (случай Uкп > Ек/2 или случай Uкп< Ек/2), т. е. максимальное (минимальное) мгновенное значение напряжения на коллекторе не должно быть больше напряжения источника питания Ек (меньше нулевого уровня).
Задача 10.2.1. (с10_201)
Дано: Для схемы на рисунке известно следующее: входное сопротивление транзистора равно 20 Ом. В исходном состоянии ключ К1 разомкнут, ключ К2 замкнут. Ток коллектора появляется при R1/R2 = 23, для R1/R2 = 7 этот ток составляет 50mA. В окончательном состоянии оба ключа (К1 и К2) замкнуты, положение движка потенциометра RSM и амплитуда напряжения генератора Eg выбраны такими, что постоянная составляющая напряжения на коллекторе равна 6 В, а выходное напряжение имеет синусоидальную форму и максимально возможную величину.


Найти: Окончательные значения амплитуды напряжения генератора Eg и отношение R1/R2 (это отношение определяет положение движка потенциометра Rsm).


Задача 10.2.2. (с10_202)
Дано: Для схемы на рисунке известны следующие параметры транзистора: коэффициент передачи тока базы равен 50, входное сопротивление транзистора RBX = 25 Ом. В исходном состоянии ключ К1 разомкнут, ключ К2 замкнут. Ток коллектора появляется при R1/R2=31. При перемещении движка вверх ток коллектора увеличивается и для R1/R2 = 11 этот ток равен 12mA. В окончательном состоянии оба ключа (К1 и К2) замкнуты. Положение движка потенциометра RSM и амплитуда напряжения генератора Eg выбраны такими, что постоянная составляющая напряжения на коллекторе равна 20 В, а выходное напряжение имеет синусоидальную форму и максимально возможную величину.
Найти: Значение амплитуды напряжения генератора Eg и отношение R1/R2.


Задача 10.2.3. (с10_203)
Дано: Для схемы на рисунке известны следующие параметры транзистора: входное сопротивление Rвх = 80 Ом. В исходном состоянии ключ К1 разомкнут, ключ К2 замкнут. При Rl=0 ток коллектора равен 100 mA. При движении движка потенциометра вниз ток не изменяется до положения R1/R2=1. При R1/R2=39, ток коллектора спадает к нулю и при дальнейшем перемещении движка вниз ток больше не изменяется. В окончательном состоянии оба ключа (К1 и К2) замкнуты. Положение движка потенциометра RSM и амплитуда напряжения генератора Eg выбраны такими, что максимальное мгновенное значение напряжения на коллекторе составляет 10 В, а выходное напряжение синусоидально и максимально возможно по величине. Найти: Значение амплитуды напряжения генератора Eg и отношение R1/R2.


Задача 10.2.4. (с10_204)
Дано: Для схемы на рисунке известно следующее. Параметры транзистора: коэффициент передачи тока базы B = 100, входное сопротивление RBX = 60 Ом. В исходном состоянии ключ К1 разомкнут, ключ К2 замкнут. При R1=0 ток коллектора составляет 150 mA и до положения движка R1/R2=1 не изменяется. При перемещении движка потенциометра вниз ток коллектора уменьшается и спадает до нуля при R1/R2 = 39. При дальнейшем перемещении движка вниз этот ток больше не изменяется. В окончательном состоянии оба ключа (К1 и К2) замкнуты. Положение движка потенциометра RSM и амплитуда напряжения генератора Eg выбраны так, что минимальное мгновенное значение напряжения на коллекторе составляет 8 В, а выходное напряжение имеет синусоидальную форму и максимально возможную величину.


Найти: Значение амплитуды напряжения генератора Eg и отношение R1/R2.


С помощью осциллографа можно измерить как постоянную, так и переменную составляющую напряжения на коллекторе.
Какова разность фаз между током и напряжением на коллекторе? Проверьте с помощью Боде-плоттера.
Задача 10.2.5. (с10_205)
Дано: Для схемы на рисунке известно следующее: входное сопротивление транзистора RBX = 60 Ом. В исходном состоянии ключ К1 разомкнут, ключ К2 замкнут, движок потенциометра RSM находится в крайнем нижнем положении. До положения движка, в котором R1/R2 = 39, напряжение на коллекторе не изменяется, оно равно ЗОВ. При дальнейшем перемещении движка потенциометра вверх напряжение на коллекторе уменьшается, и для R1/R2=4.263 (81%) это напряжение составляет 13.5 В, а ток коллектора равен 55 mA. В окончательном состоянии оба ключа (К1 и КЗ) замкнуты. Положение движка потенциометра RSM и амплитуда напряжения генератора Eg выбраны такими, что постоянная составляющая тока коллектора равна 75 mA, а выходное напряжение имеет синусоидальную форму и максимально возможную величину.
Найти: Значение амплитуды напряжения генератора Eg и отношение R1/R2.


Проверяйте характеристики транзистора. Они могут не совпадать с расчетными.
Как изменится выходное напряжение, если уве личить коэффициент передачи базового тока на 20%? Проверьте.
Задача 10.2.6. (с10_206)
Дано: Для схемы на рисунке известно следующее: коэффициент передачи базового тока транзистора B = 40, входное сопротивление транзистора Rвx = 60 Ом. В исходном состоянии ключ К1 разомкнут, ключ К2 замкнут, движок потенциометра RSM находится в крайнем нижнем положении. Движок перемещают вверх. До положения, в котором R1/R2=27, напряжение на коллекторе не изменяется, оно равно 21В. При R1/R2=6 это напряжение составляет 18.6 В, а ток коллектора равен 12 mA. В окончательном состоянии оба ключа (К1 и К2) замкнуты. Положение движка потенциометра RSM и амплитуда напряжения генератора Eg выбраны такими, что постоянная составляющая тока коллектора равна 24 mA, а выходное напряжение имеет синусоидальную форму и максимально возможную величину. Найти: Значение амплитуды напряжения генератора Eg и отношение R1/R2.



Как изменится коэффициент усиления схемы по напряжению при перемещении движка потенциометра вверх?
Задача 10.2.7. (с10_207.са4)
Дано: Для схемы на рисунке известно следующее: входное сопротивление транзистора RBX=1OO Ом. В исходном состоянии ключ К1 разомкнут, ключ К2 замкнут, движок потенциометра RSM находится в крайнем верхнем положении. Затем движок перемещают вниз. Напряжение на коллекторе появляется при R1/R2=4.6. При дальнейшем перемещении движка потенциометра вниз напряжение на коллекторе увеличивается и достигает 36 В для R1/R2=47. При дальнейшем перемещении движка вниз это напряжение больше не изменяется. В окончательном состоянии оба ключа (К1 и К2) замкнуты. Положение движка потенциометра и амплитуда напряжения генератора Eg выбраны так, что максимальное мгновенное значение тока коллектора равно 90 mA, а выходное напряжение синусоидально и имеет максимально возможную величину.
Найти: Амплитуду напряжения генератора Eg и отношение R1/R2.


Как изменится форма тока коллектора при уменьшении сопротивления резистора Rк? Проверьте ответ с помощью осциллографа.
Задача 10.2.8. (с10_208.СА4)
Дано: Для схемы на рисунке известно следующее: входное сопротивление транзистора RBX=1OO Ом. В исходном состоянии ключ К1 разомкнут, ключ К2 замкнут, движок потенциометра RSM находится в крайнем верхнем положении. Напряжение на коллекторе появляется при R1/R2=1. При перемещении движка потенциометра вниз напряжение на коллекторе увеличивается. Когда движок дойдет до положения, в котором R1/R2=19, напряжение на коллекторе достигает 15 В, и при дальнейшем перемещении движка вниз это напряжение больше не изменяется. В окончательном состоянии оба ключа (К1 и К2) замкнуты. Положение движка потенциометра RCM и амплитуда напряжения генератора Eg выбраны так, что минимальное мгновенное значение тока коллектора составляет 45 mA, а выходное напряжение синусоидально и имеет максимально возможную величину.
Найти: Амплитуду напряжения генератора Eg и отношение R1/R2.


Какое различие между током генератора и током базы? Проверьте с помощью осциллографа.
Задача 10.2.9. (с10_209.са4)


Дано: Для схемы на рисунке известно следующее: входное сопротивление транзистора Bвх=100 Ом. В исходном состоянии ключ К1 разомкнут, ключ К2 замкнут, движок потенциометра RSM перемещают из нижнего положения в верхнее. Когда движок находится в среднем положении (R1=R2), напряжение на коллекторе равно 14.1 В, а ток коллектора 70.5 mA. В крайнем верхнем положении (R1=0) ток коллектора составляет 125 mA. В окончательном состоянии оба ключа (К1 и К2) замкнуты. Движок потенциометра Rsm находится в промежуточном положении, для которого R1/R2=3, а выходное напряжение синусоидально и имеет максимально возможную величину. Найти: Амплитуду напряжения генератора Eg в окончательном состоянии.


Какие формы имеют напряжения в точках подключения щупов осциллографа? Какое различие между ними? Ответ проверьте при помощи осциллографа.
Задача 10.2.10. (с10_210.са4)
Дано: Для схемы на рисунке известно следующее: входное сопротивление транзистора Rвх=100 Ом. В исходном состоянии ключ К1 разомкнут, ключ К2 замкнут, движок потенциометра RSM плавно перемещают из нижнего положения в верхнее. Когда движок находится в среднем положении (R1=R2), напряжение на коллекторе составляет 6 В, а ток коллектора равен 20 mA. В крайнем верхнем положении (R1=0) напряжение на коллекторе составляет 2.4 В. В окончательном состоянии оба ключа (К1 и К2) замкнуты. Движок потенциометра RSM находится в промежуточном положении, для которого R1/R2=0.41 (29%), а выходное напряжение синусоидально и имеет максимально возможную величину.
Найти: Амплитуду напряжения генератора Eg в окончательном состоянии.


Как изменится форма выходного напряжения, если последовательно к базе транзистора подключить резистор R=20 Ом? Проверьте.
Задачи 10.2.11...10.2.34 находятся на прилагаемой к книге дискете.
Задание режима по постоянному току с помощью одного резистора В задании рассматриваются схемы, представленные на рис. 10.39. Для определения постоянных составляющих токов и напряжений можно воспользоваться выражениями (10.21), (10.22), (10.23), для расчета переменных составляющих токов базы и коллектора справедливы выражения (10.24), (10.25), переменная составляющая напряжения на коллекторе (она же - напряжение на выходе или нагрузке) находится с помощью выражения (10.26), величина Rэкв в формуле равна сопротивлению резисторов Rк и Rн, соединенных параллельно. Ток смещения задается с помощью резистора в цепи базы Rg. Величина Еэкв в формуле (10.21) применительно к данному заданию равна напряжению источника питания Ек. Схемы для моделирования:



Рекомендации по выполнению работы:
1. Откройте файл с именем, совпадающим с номером задачи. Подставьте в схему найденные значения номиналов компонентов. 1.1 Для редактирования характеристик транзистора откройте окно свойств транзистора. Это можно проделать, дважды щелкнув мышью по его изображению, или выбрав пункт Model в меню Circuit. В открывшемся окне будет подсвечено наименование транзистора, установленного в схеме. Для редактирования характеристик нажмите кнопку Edit. Коэффициент передачи тока базы устанавливается в строке Forward current gain coefficient (BF), пороговое напряжение UБЭО в строке В - Е junction potential . Затем нажмите Accept для сохранения введенных значений параметров и Accept для возврата к схеме. Параметр RBX Для каждой задачи уже установлен, поэтому его редактировать не надо. 2. Подключите приборы. Включите схему. Если полученный результат не сходится с условием, попробуйте использовать вторую схему, где транзистор заменен моделью.
Задача 10.3.1. (с10_301)
Дано: Для схемы на рисунке известно следующее. Параметры транзистора: коэффициент передачи тока базы B = 80, пороговое напряжение Uвэо =0.75 В. Амплитуда напряжения генератора Eg составляет 200 mB. Выходное напряжение синусоидально, его амплитуда равна 40 В. Постоянная составляющая тока базы имеет минимально возможную величину. Найти: Входное сопротивление транзистора и сопротивление Rь в цепи базы.


Идея измерения входного сопротивления транзистора состоит в измерении отношения выходного напряжения к входному.
Какие различия между напряжением на коллекторе транзистора и напряжением на резисторе RL (выходным напряжением)?
Задача 10.3.2. (с10_302)
Дано: Для схемы на рисунке известно следующее. Параметры транзистора: коэффициент передачи тока базы (3 = 50, входное сопротивление RBX = 20 Ом, пороговое напряжение UБэо=О.75 В. Выходное напряжение синусоидально, его амплитуда равна 12 В. Постоянная составляющая тока базы имеет минимально возможную величину. Найти: Амплитуду напряжения генератора Eg и сопротивление Кь в цепи базы.



Задача 10.3.3. (с10_303)
Дано: Для схемы на рисунке известно следующее. Параметры транзистора: коэффициент передачи тока базы р = 50, входное сопротивление Rвх= 40 Ом, пороговое напряжение Uбэо = 0.75 В. Выходное напряжение синусоидально. Амплитуда переменной составляющей тока коллектора равна 40 mA. Постоянная составляющая тока базы имеет минимально возможную величину. Найти: Амплитуду напряжения генератора Eg, амплитуду выходного напряжения и сопротивление Rь в цепи базы.


Задача 10.3.4. (с10_304)
Дано: Для схемы на рисунке известно следующее. Параметры транзистора: коэффициент передачи тока базы B = 60, входное сопротивление Rвх = 30 Ом, пороговое напряжение UБЭО = 0.75 В. Выходное напряжение синусоидально. Амплитуда переменной составляющей тока резистора Rк равна 30 mA. Постоянная составляющая тока базы имеет минимально возможную величину. Найти: Амплитуду напряжения генератора Eg и сопротивление Кь в цепи базы.


Задача 10.3.5. (с10_305)
Дано: Для схемы на рисунке известно следующее. Параметры транзистора: коэффициент передачи тока базы B = 50, пороговое напряжение Uвэо =0.75 В. Амплитуда напряжения генератора Eg равна 64 mB. Выходное напряжение синусоидально, его амплитуда равна 16 В. Постоянная составляющая тока базы имеет максимально возможную величину. Найти: Входное сопротивление транзистора и сопротивление Rь в цепи базы.


Какова форма напряжения на конденсаторе С2? Как это напряжение измерить?
Задача 10.3.6. (с10_306)
Дано: Для схемы на рисунке известно следующее. Параметры транзистора: коэффициент передачи тока базы B = 50, входное сопротивление Rвх = 30 Ом, пороговое напряжение UБЭО =0.75 В. Выходное напряжение синусоидально, его амплитуда равна 1.5 В. Постоянная составляющая тока базы имеет максимально возможную величину. Найти: Амплитуду напряжения генератора Eg и сопротивление Rb в цепи базы.


Как изменится ток нагрузки при увеличении сопротивления RK?
Задачи 10.3.7—10.3.30 находятся на прилагаемой к книге дискете.
Расчет и анализ переменных составляющих токов и напряжений в усилителе


В задачах рассматриваются схемы, представленные на рис. 10.40. При решении задач необходимо обратить внимание на различия в характере зависимости напряжения нагрузки Uн и тока нагрузки 1н от величины сопротивления нагрузки Rн. Со стороны выхода транзистор представляет собой источник тока. Нагрузкой выходной цепи транзистора по переменному току являются параллельно соединенные резисторы Rн и Rк- При увеличении Rн величина общего параллельного сопротивления увеличивается, в результате напряжение нагрузки, равное произведению выходного тока транзистора на общее параллельное сопротивление, тоже увеличивается. Характер зависимости тока нагрузки от сопротивления нагрузки противоположный. Переменная составляющая выходного тока транзистора делится между двумя указанными резисторами (Rн и Rк). При увеличении сопротивления одного из этих резисторов ток через него уменьшается (т. е. при увеличении Rн ток нагрузки уменьшается). Характеристики, приведенные в вариантах задания, построены без учета знака "-", (т. е. по модулю) и получены с помощью измерительных приборов (амперметров и вольтметров), включенных на входе и выходе усилителя (в схеме они не показаны). Такие приборы измеряют только действующие значения синусоидальных сигналов. В предлагаемых задачах требуется рассчитать переменные составляющие токов и напряжений, режим работы схемы по постоянному току (т. е. положение рабочей точки на входной характеристике транзистора) уже задан. Схемы для моделирования:


Рекомендации по выполнению работы.: 1. Откройте файл с именем, совпадающим с номером задачи. Подставьте в схему найденные значения номиналов компонентов. 1.1 Для редактирования характеристик транзистора откройте окно свойств транзистора. Это можно проделать, дважды щелкнув мышью по его изображению, или выбрав пункт Model в меню Circuit. В открывшемся окне будет подсвечено наименование транзистора, установленного в схеме. Для редактирования характеристик нажмите кнопку Edit. Коэффициент передачи тока базы устанавливается в строке Forward current gain coefficient (BF), пороговое напряжение UБЭО в строке В - Е junction potential. Затем нажмите Accept для сохранения введенных значений параметров и Accept для возврата к схеме. Параметр RBX Для каждой задачи уже установлен, поэтому его редактировать не надо. 2. Подключите приборы. Включите схему. 3. С помощью вольтметра и амперметра измерьте значения токов и напряжений в схеме, а затем сравните экспериментальные данные с данными в условии задачи. С помощью Боде-плоттера проверьте коэффициент усиления входного сигнала по напряжению. Замечание: Нужно помнить, что приборы измеряют только действующие значения синусоидальных сигналов и амплитуда переменного сигнала устанавливается путем задания в схеме величины действующего значения (например,



Задача 10.4.1. (с10_401)
Дано: B= 50, RIN = 11 Ом. Получены две разные характеристики для разных значений Rr и R: 1.Rн=2000м, 2.Rн=4000м. В первом случае сопротивление генератора Rr вдвое больше, чем во втором (Rr1=2Rr2). Найти: Rr, Rк.


Задача 10.4.2. (с10_402)
Дано: (B= 50, Rin =11 Ом. Получены две разные характеристики для разных значений Rr и Rн: 1.Rн-2000м, 2. Rн = 400 Ом. В первом случае сопротивление генератора Rr вдвое больше, чем во втором (Rг1 = 2Рг2). Найти: Rr, Rк.


Задача 10.4.3. (с10_403)
Дано: RIN = 20 Ом. Получены две разные характеристики для разных значений Rr и Rн: 1. Rr = 20 Ом, Rн = 200 Ом; 2. Rr = 10 Ом, Rн = 300 Ом. Найти: B. Rк.


Задача 10.4.4. (с10_404)
Дано: RBX = 10 Ом. Получены две разные характеристики для разных значений Rr и Rн: 1. Rr = 20 Ом, RH = 200 Ом; 2. Rr = 30 Ом, RH = Rк < 200 Ом. Найти: B, Rк.


Задача 10.4.5. (с10_405)
Дано: B = 60, RBX = 20 Ом. Получены две разные характеристики для разных значений Rr и Rн: 1. Rr = 10 Ом, Rн = 400 Ом; 2. Rr = 20 Ом, Rн = 300 Ом. Найти: Rк. U.


Задача 10.4.6. (с10_406)
Дано: B= 80, Rк = 1 кОм, Rвх - 60 Ом. Получены две разные характеристики для разных значений Rг и Ен: 1.Rн=0.5кОм, 2. Rн = 1 кОм. Сопротивление генератора для второй характеристики составляет 75 % от сопротивления генератора для первой характеристики (Rr= 0.75 Rr1). Найти: Rr, U.


Задача 10.4.7. (с10_407)
Дано: B= 75, Rвх = 30 Ом. Получены две разные характеристики для разных значений Rr и Rн: 1. Rr - 40 Ом, Rн - 420 Ом; 2. Rr = 20 Ом, Rн = 600 Ом. Найти: Rк, Е.


Задача 10.4.8. (с10_408)
Дано: B=100, Rк - 120 Ом, Rвх = 44 Ом. Получены две разные характеристики для разных значений Rг и Rн: 1. Rн=3600м, 2. Rн=240 Ом. Сопротивление генератора для второй характеристики в 3.6 раза превышает сопротивление генератора для первой характеристики. Найти: Rг, Е.


Задачи 10.4.9...10.4.28 находятся на прилагаемой к книге дискете.

Исследование биполярного транзистора


Эксперименты

10.1. Исследование биполярного транзистора

Цель

1. Исследование зависимости тока коллектора от тока базы и напряжения база-эмиттер.

2. Анализ зависимости коэффициента усиления по постоянному току от тока коллектора.

3. Исследование работы биполярного транзистора в режиме отсечки.

4. Получение входных и выходных характеристик транзистора.

5. Определение коэффициента передачи по переменному току.

6. Исследование динамического входного сопротивления транзистора.


Краткие сведения из теории Исследуемая схема показана на рис. 10.1. Статический коэффициент передачи тока определяется как отношение тока коллектора IK к току базы Iб:


Коэффициент передачи тока определяется отношением приращения коллекторного тока к вызывающему его приращению базового тока:


Дифференциальное входное сопротивление rвх транзистора в схеме с общим эмиттером (ОЭ) определяется при фиксированном значении напряжения коллектор-эмиттер. Оно может быть найдено как отношение приращения напряжения база-эмиттер к вызванному им приращению тока базы:


Дифференциальное входное сопротивление Гвх транзистора в схеме с ОЭ через параметры транзистора определяется следующим выражением:


где rБ - распределенное сопротивление базовой области полупроводника, rэ - дифференциальное сопротивление перехода база-эмиттер, определяемое из выражения: rэ = 25/1э, где Iэ - постоянный ток эмиттера в миллиамперах. Первое слагаемое ГБ в выражении много меньше второго, поэтому им можно пренебречь:


Дифференциальное сопротивление Гэ перехода база-эмиттер для биполярного транзистора сравнимо с дифференциальным входным сопротивлением rвхов транзистора в схеме с общей базой, которое определяется при фиксированном значении напряжения база-коллектор. Оно может быть найдено как отношение приращения к вызванному им приращению тока эмиттера:


Через параметры транзистора это сопротивление определяется выражением:


Первым слагаемым в выражении можно пренебречь, поэтому можно считать, что дифференциальное сопротивление перехода база-эмиттер приблизительно равно:



Порядок проведения экспериментов Эксперимент 1. Определение статического коэффициента передачи тока транзистора. а). Открыть файл с10_0011 со схемой, изображенной на рис. 10.1. Включить схему. Записать результаты измерения тока коллектора, тока базы и напряжения коллектор-эмиттер в раздел "Результаты экспериментов". По полученным результатам подсчитать статический коэффициент передачи транзистора рос. Результат записать в раздел "Результаты экспериментов".



1 Для удобства снятия характеристик в модели транзистора изменен параметр Forward Beta High-Current Knee Point (Ikf)

б). Изменить номинал источника ЭДС Ев до 2.68 В. Включить схему. Записать результаты измерения тока коллектора, тока базы и напряжения коллектор-эмиттер в раздел "Результаты экспериментов". По полученным результатам подсчитать коэффициент Bпс. Ответ записать в раздел "Результаты экспериментов". в). Изменить номинал источника ЭДС Ецдо 5 В. Запустить схему. Записать результаты измерения тока коллектора, тока базы и напряжения коллектор-эмиттер в раздел "Результаты экспериментов". По полученным результатам подсчитать статический коэффициент передачи транзистора BDс. Результат записать в раздел "Результаты экспериментов". Затем установить номинал Ек равным 10 В. Эксперимент 2. Измерение обратного тока коллектора. На схеме рис. 10.1 изменить номинал источника ЭДС Eб до О В. Включить схему. Записать результаты измерения тока коллектора для данных значений тока базы и напряжения коллектор-эмиттер в раздел "Результаты экспериментов".



Эксперимент 3. Получение выходной характеристики транзистора в схеме с ОЭ. а). В схеме (рис. 10.1) провести измерения тока коллектора Iк для каждого значения Ек и Ев и заполнить таблицу 10.1 в разделе "Результаты экспериментов". По данным таблицы построить график зависимости 1к от Ек. б). Открыть файл с10_002 со схемой, изображенной на рис. 10.2. Включить схему. Зарисовать осциллограмму выходной характеристики, соблюдая масштаб, в разделе "Результаты экспериментов". Повторить измерения для каждого значения Ев из таблицы 10.1. Осциллограммы выходных характеристик для разных токов базы зарисовать в разделе "Результаты экспериментов" на одном графике. в). По выходной характеристике найти коэффициент передачи тока РАС при изменении базового тока с 10 мА до 30 мA, Ек = 10 В. Результат записать в раздел "Результаты экспериментов". Эксперимент 4. Получение входной характеристики транзистора в схеме с ОЭ.

а). Открыть файл с10_001 (рис. 10.1). Установить значение напряжения источника Ек равным 10 В и провести измерения тока базы 1в, напряжения база-эмиттер UБЭ тока эмиттера 1э для различных значений напряжения источника Ев в соответствии с таблицей 10.2 в разделе "Результаты экспериментов". Обратить внимание, что коллекторный ток примерно равен току в цепи эмиттера.





б). В разделе " Результаты экспериментов" по данным таблицы 10.2 построить график зависимости тока базы от напряжения база-эмиттер.

в). Открыть файл с10_003 со схемой, изображенной на рис. 10.3. Включить схему. Зарисовать входную характеристику транзистора, соблюдая масштаб, в разделе "Результаты экспериментов". г). По входной характеристике найти сопротивление rвх при изменении базового тока с 10мA до 30 мA. Результат записать в раздел "Результаты экспериментов". Эксперимент 5. Получение входной характеристики транзистора в схеме с общей базой. а). По данным таблицы 10.2, полученным в п.6, построить график зависимости тока эмиттера от напряжения база-эмиттер. 6). Открыть файл с10_004 со схемой, изображенной на рис. 10.4. Включить схему. Зарисовать осциллограмму полученной характеристики в разделе "Результаты экспериментов".

в). По полученной характеристике найти сопротивление rэ при изменении базового тока с 10мА до 30мА. Результат записать в раздел "Результаты экспериментов". г). Найти сопротивление Гэ по формуле rэ = 25 мВ/Iэ, используя значение 1э из таблицы 10.2 при 1в = 20 мA. Результат записать в раздел "Результаты экспериментов".



Результаты экспериментов Эксперимент 1. Определение коэффициента передачи транзистора по постоянному току.



Эксперимент 2. Измерение обратного тока коллектора.



Эксперимент 3. Получение выходной характеристики транзистора в схеме с ОЭ.

Таблица 10.1

ЕК(В)

Ев (В)

IB (мкА)

0.1

0.5

1

5

10

20

1.66

2.68

3.68

4.68

5.7

График выходной характеристики транзистора



Осциллограммы входных характеристик транзистора для разных токов базы





Эксперимент 4. Получение входной характеристики транзистора в схеме с ОЭ.

Таблица 10.2

Ев (В)

IB (мкА)

Uбэ (мВ)

IK (мА)

1.66

2.68

3.68

4.68

5.7

График зависимости тока базы от напряжения база-эмиттер



Осциллограмма входной характеристики транзистора





Эксперимент 5. Получение входной характеристики транзистора в схеме с ОБ. График зависимости тока эмиттера от напряжения база-эмиттер





Осциллограмма входной характеристики транзистора в схеме с ОБ





Вопросы

1. От чего зависит ток коллектора транзистора?

2. Зависит ли коэффициент Bцс от тока коллектора? Если да, то в какой степени? Обосновать ответ.

3. Что такое токи утечки транзистора в режиме отсечки?

4. Что можно сказать по выходным характеристикам о зависимости тока коллектора от тока базы и напряжения коллектор-эмиттер?

5. Что можно сказать по входной характеристике о различии между базо-эмиттерным переходом и диодом, смещенном в прямом направлении?

6. Одинаково ли значение rвх в любой точке входной характеристики?

7. Одинаково ли значение rэ при любом значении тока эмиттера?

8. Как отличается практическое значение сопротивления rэ от вычисленного по формуле?


Транзисторы и транзисторные схемы



ЭКСПЕРИМЕНТЫ

10.1. Исследование биполярного транзистора

10.2. Задание рабочей точки в транзисторном каскаде

10.3. Работа транзисторного каскада в режиме малого сигнала

УПРАЖНЕНИЯ

10.4. Расчет и исследование параметров рабочей точки в транзисторных каскадах

10.5. Расчет транзисторного каскада в области малого сигнала